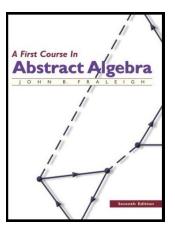
Introduction to Modern Algebra

Part Part II. Permutations, Cosets, and Direct Products II.10. Cosets and the Theorem of Lagrange



- 3 Theorem 10.10 (Theorem of Lagrange)
- 4 Corollary 10.11.
- 5 Theorem 10.12

Theorem. 10.1. Let H be a subgroup of group G. Let the relation \sim_L be defined on G by $a \sim_L b$ iff $a^{-1}b \in H$. Let \sim_L and \sim_R be defined by $a \sim_R b$ iff $ab^{-1} \in H$. Let \sim_L and \sim_R are both equivalence relations on G.

Proof. We give a proof for \sim_L . The proof for \sim_R is similar and is Exercise 10.26. Let $a \in G$. The $a^{-1}a = e$ and $e \in H$ since H is a group. So $a \sim_L a$ and \sim_L is reflexive.

Theorem 10.1

Theorem. 10.1. Let H be a subgroup of group G. Let the relation \sim_L be defined on G by $a \sim_L b$ iff $a^{-1}b \in H$. Let \sim_L and \sim_R be defined by $a \sim_R b$ iff $ab^{-1} \in H$. Let \sim_L and \sim_R are both equivalence relations on G.

Proof. We give a proof for \sim_L . The proof for \sim_R is similar and is Exercise 10.26. Let $a \in G$. The $a^{-1}a = e$ and $e \in H$ since H is a group. So $a \sim_L a$ and \sim_L is reflexive.

Suppose $a \sim_L b$. Then $a^{-1}b \in H$. Since H is a group, $(a^{-1}b)^{-1} = b^{-1}a \in H$ and $b \sim_L a$. So \sim_L is symmetric.

Theorem 10.1

Theorem. 10.1. Let H be a subgroup of group G. Let the relation \sim_L be defined on G by $a \sim_L b$ iff $a^{-1}b \in H$. Let \sim_L and \sim_R be defined by $a \sim_R b$ iff $ab^{-1} \in H$. Let \sim_L and \sim_R are both equivalence relations on G.

Proof. We give a proof for \sim_L . The proof for \sim_R is similar and is Exercise 10.26. Let $a \in G$. The $a^{-1}a = e$ and $e \in H$ since H is a group. So $a \sim_L a$ and \sim_L is reflexive.

Suppose
$$a \sim_L b$$
. Then $a^{-1}b \in H$. Since H is a group,
 $(a^{-1}b)^{-1} = b^{-1}a \in H$ and $b \sim_L a$. So \sim_L is symmetric.

Let $a \sim_L b$ and $b \sim_L c$. Then $a^{-1}b, b^{-1}c \in H$. Since H is a group, $(a^{-1}b)(b^{-1}c) = a^{-1}c \in H$ and so $a \sim_L c$ and \sim_L is transitive.

Theorem 10.1

Theorem. 10.1. Let H be a subgroup of group G. Let the relation \sim_L be defined on G by $a \sim_L b$ iff $a^{-1}b \in H$. Let \sim_L and \sim_R be defined by $a \sim_R b$ iff $ab^{-1} \in H$. Let \sim_L and \sim_R are both equivalence relations on G.

Proof. We give a proof for \sim_L . The proof for \sim_R is similar and is Exercise 10.26. Let $a \in G$. The $a^{-1}a = e$ and $e \in H$ since H is a group. So $a \sim_L a$ and \sim_L is reflexive.

Suppose
$$a \sim_L b$$
. Then $a^{-1}b \in H$. Since H is a group,
 $(a^{-1}b)^{-1} = b^{-1}a \in H$ and $b \sim_L a$. So \sim_L is symmetric.
Let $a \sim_L b$ and $b \sim_L c$. Then $a^{-1}b, b^{-1}c \in H$. Since H is a group,
 $(a^{-1}b)(b^{-1}c) = a^{-1}c \in H$ and so $a \sim_L c$ and \sim_L is transitive.

Lemma

Lemma. Consider group G with subgroup H. Then every left coset of H and every right coset of H have the same cardinality, namely |H|. That is, for any coset g_1H or Hg_2 , there are one-to-one and onto mappings ϕ_1 and ϕ_2 such that $\phi_1 : H \to g_1H$ and $\phi_2 : H \to Hg_2$.

Proof. For $g_1 \in G$, define $\varphi_1 : H \to g_1 H$ as $\varphi_1(h) = g_1 h$ for each $h \in H$. So (as a set mapping), $\varphi_1(H) = g_1 H$ and φ is onto. Next, let $h, h' \in H$ and suppose $\varphi_1(h) = \varphi_1(h')$. That is, suppose $g_1 h = g_1 h'$. Then by left cancellation in G, h = h' and so φ is one-to-one. The proof for $\varphi_2 : H \to Hg_2$ is similar (it is Exercise 10.27). **Lemma.** Consider group G with subgroup H. Then every left coset of H and every right coset of H have the same cardinality, namely |H|. That is, for any coset g_1H or Hg_2 , there are one-to-one and onto mappings ϕ_1 and ϕ_2 such that $\phi_1 : H \to g_1H$ and $\phi_2 : H \to Hg_2$.

Proof. For $g_1 \in G$, define $\varphi_1 : H \to g_1 H$ as $\varphi_1(h) = g_1 h$ for each $h \in H$. So (as a set mapping), $\varphi_1(H) = g_1 H$ and φ is onto. Next, let $h, h' \in H$ and suppose $\varphi_1(h) = \varphi_1(h')$. That is, suppose $g_1 h = g_1 h'$. Then by left cancellation in G, h = h' and so φ is one-to-one. The proof for $\varphi_2 : H \to Hg_2$ is similar (it is Exercise 10.27).

Theorem 10.10 (Theorem of Lagrange)

Theorem 10.10. Theorem of Lagrange ("Lagrange's Theorem"). Let H be a subgroup of a finite group G. Then the order of H is a divisor of the order of G.

Proof. Suppose |G| = n and |H| = m. By Theorem 10.1, the left cosets of *H* partition *G*. Let *r* be the number of left cosets of *H*. Then, since all left cosets are the same size by "Lemma," n = mr and so $m \mid n$.

Theorem 10.10 (Theorem of Lagrange)

Theorem 10.10. Theorem of Lagrange ("Lagrange's Theorem"). Let H be a subgroup of a finite group G. Then the order of H is a divisor of the order of G.

Proof. Suppose |G| = n and |H| = m. By Theorem 10.1, the left cosets of *H* partition *G*. Let *r* be the number of left cosets of *H*. Then, since all left cosets are the same size by "Lemma," n = mr and so $m \mid n$.

Corollary 10.11.

Corollary 10.11. Every group of prime order is cyclic.

Proof. Let *a* be an element of group *G* of prime order *p*, where *a* is not the identity of *G* (recall that 1 is not prime). Then by Theorem 5.17, $\langle a \rangle$ is a subgroup of *G*. By Lagrange's Theorem (Theorem 10.10), the order of $\langle a \rangle$ divides the order *p* of *G*.

Corollary 10.11. Every group of prime order is cyclic.

Proof. Let *a* be an element of group *G* of prime order *p*, where *a* is not the identity of *G* (recall that 1 is not prime). Then by Theorem 5.17, $\langle a \rangle$ is a subgroup of *G*. By Lagrange's Theorem (Theorem 10.10), the order of $\langle a \rangle$ divides the order *p* of *G*. But since *p* is prime, so the order of $\langle a \rangle$ must be either 1 or *p*. Since *a* is not the identity of *G*, then the order of $\langle a \rangle$ is not 1. So the order of $\langle a \rangle$ is *p* and $\langle a \rangle = G$. Therefore *G* is cyclic.

Corollary 10.11. Every group of prime order is cyclic.

Proof. Let *a* be an element of group *G* of prime order *p*, where *a* is not the identity of *G* (recall that 1 is not prime). Then by Theorem 5.17, $\langle a \rangle$ is a subgroup of *G*. By Lagrange's Theorem (Theorem 10.10), the order of $\langle a \rangle$ divides the order *p* of *G*. But since *p* is prime, so the order of $\langle a \rangle$ must be either 1 or *p*. Since *a* is not the identity of *G*, then the order of $\langle a \rangle$ is not 1. So the order of $\langle a \rangle$ is *p* and $\langle a \rangle = G$. Therefore *G* is cyclic.

Theorem 10.12. The order of an element of a finite group divides the order of the group.

Proof. The order of $a \in G$ is $|\langle a \rangle|$ by definition, and by Lagrange's Theorem, $|\langle a \rangle| | |G|$, since $\langle a \rangle$ is a subgroup of G.

Theorem 10.12. The order of an element of a finite group divides the order of the group.

Proof. The order of $a \in G$ is $|\langle a \rangle|$ by definition, and by Lagrange's Theorem, $|\langle a \rangle| \mid |G|$, since $\langle a \rangle$ is a subgroup of G.