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Theorem 10.1

Theorem 10.1

Theorem. 10.1. Let H be a subgroup of group G . Let the relation ∼L be
defined on G by a ∼L b iff a−1b ∈ H. Let ∼L and ∼R be defined by
a ∼R b iff ab−1 ∈ H. Let ∼L and ∼R are both equivalence relations on G .

Proof. We give a proof for ∼L. The proof for ∼R is similar and is Exercise
10.26. Let a ∈ G . The a−1a = e and e ∈ H since H is a group. So a ∼L a
and ∼L is reflexive.

Suppose a ∼L b. Then a−1b ∈ H. Since H is a group,(
a−1b

)−1
= b−1a ∈ H and b ∼L a. So ∼L is symmetric.

Let a ∼L b and b ∼L c . Then a−1b, b−1c ∈ H. Since H is a group,(
a−1b

) (
b−1c

)
= a−1c ∈ H and so a ∼L c and ∼L is transitive.
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Lemma

Lemma

Lemma. Consider group G with subgroup H. Then every left coset of H
and every right coset of H have the same cardinality, namely |H|. That is,
for any coset g1H or Hg2, there are one-to-one and onto mappings φ1 and
φ2 such that φ1 : H → g1H and φ2 : H → Hg2.

Proof. For g1 ∈ G , define ϕ1 : H → g1H as ϕ1 (h) = g1h for each h ∈ H.
So (as a set mapping), ϕ1 (H) = g1H and ϕ is onto. Next, let h, h′ ∈ H
and suppose ϕ1 (h) = ϕ1

(
h′

)
. That is, suppose g1h = g1h

′. Then by left
cancellation in G , h = h′ and so ϕ is one-to-one. The proof for
ϕ2 : H → Hg2 is similar (it is Exercise 10.27).
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Theorem 10.10 (Theorem of Lagrange)

Theorem 10.10 (Theorem of Lagrange)

Theorem 10.10. Theorem of Lagrange (“Lagrange’s Theorem”).
Let H be a subgroup of a finite group G . Then the order of H is a divisor
of the order of G .

Proof. Suppose |G | = n and |H| = m. By Theorem 10.1, the left cosets
of H partition G . Let r be the number of left cosets of H. Then, since all
left cosets are the same size by “Lemma,” n = mr and so m | n.
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Corollary 10.11.

Corollary 10.11.

Corollary 10.11. Every group of prime order is cyclic.

Proof. Let a be an element of group G of prime order p, where a is not
the identity of G (recall that 1 is not prime). Then by Theorem 5.17, 〈a〉
is a subgroup of G . By Lagrange’s Theorem (Theorem 10.10), the order of
〈a〉 divides the order p of G .

But since p is prime, so the order of 〈a〉 must
be either 1 or p. Since a is not the identity of G , then the order of 〈a〉 is
not 1. So the order of 〈a〉 is p and 〈a〉 = G . Therefore G is cyclic.
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Theorem 10.12

Theorem 10.12

Theorem 10.12. The order of an element of a finite group divides the
order of the group.

Proof. The order of a ∈ G is |〈a〉| by definition, and by Lagrange’s
Theorem, |〈a〉| | |G |, since 〈a〉 is a subgroup of G .
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