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Theorem 11.2

Theorem 11.2

Theorem 11.2. Let G1,G2, . . . ,Gn be (multiplicative) groups. For
(a1, a2, . . . , an), (b1, b2, . . . , bn) ∈

∏n
i=1 G1, define the (multiplicative)

binary operation (a1, a2, ..., an) (b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn) .
Then

∏n
i=1 Gi is a group under this binary operation.

Proof. Notice that, by definition,
∏n

i=1 G1 is closed under the introduced
binary operation. We now verify that

∏
Gi satisfies the definition of

group. Associativity in
∏

Gi holds (G1) because:
(a1, a2, . . . , an)

(
(b1, b2, . . . , bn) (c1, c2, . . . , cn)

)
= (a1, a2, . . . , an) (b1c1, b2c2, . . . , bncn)

=
(
a1 (b1c1) , a2 (b2c2) , · · · , an (bncn)

)
=

(
(a1b1) c1, (a2b2) c2, · · · , (anbn) cn

)
since each Gi is a group

and so associativity holds in each Gi

= (a1b1, a2b2, · · · anbn) (c1, c2, · · · , cn)

=
(
(a1, a2, · · · , an) (b1, b2, · · · , bn)

)
(c1, c2, · · · , cn) .
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Theorem 11.2

Theorem 11.2 (continued).

Theorem 11.2. Let G1,G2, . . . ,Gn be (multiplicative) groups. For
(a1, a2, . . . , an), (b1, b2, . . . , bn) ∈

∏n
i=1 G1, define the (multiplicative)

binary operation (a1, a2, ..., an) (b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn) .
Then

∏n
i=1 Gi is a group under this binary operation.

Proof (continued). Next, there is an identity in
∏

Gi , namely
(e1, e2, · · · , en) where ei is the identity in Gi :
(e1, e2, · · · , en) (a1, a2, · · · , an) = (e1a1, e2a2, · · · enan) = (a1, a2, · · · , an)

for all (a1, a2, · · · , an) ∈
∏

Gi , and so G2 holds.

Finally, for (a1, a2, · · · , an) ∈
∏

Gi , consider
(
a−1
1 , a−1

2 , · · · , a−1
n

)
∈

∏
Gi

(ai ∈ Gi has inverse a−1
i ∈ Gi since Gi is a group). Then

(a1, a2, · · · , an)
(
a−1
1 , a−1

2 , · · · , a−1
n

)
=

(
a1a

−1
1 , a2a

−1
2 , · · · , ana

−1
n

)
=

(e1, e2, · · · , en), and every element of
∏

Gi has an inverse. So G3 holds
and

∏
Gi is a group.
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Theorem 11.5.

Theorem 11.5.

Theorem. 11.5. The group Zm × Zn is cyclic and is isomorphic to Zmn if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof. Consider the cyclic subgroups of Zm × Zn generated by (1, 1). By
Theorem 6.10 proof Case II , the order of 〈(1, 1〉 is the order of (1, 1) in
Zm × Zn. The order of (1, 1) is k where k is the smallest natural number
such that (in additive notation) k (1, 1) = (0, 0) (where (0, 0) is the
identity in Zm × Zn).

Now k (1, 1) = (k, k) = (0, 0) only if k is both a multiple of m and a
multiple of n. The smallest such k is the least common multiple of m and
n, k = lcm (m, n). If m and n are relatively prime, then by Exercise 6.47b,
k = mn. So if m and n are relatively prime (i.e., gcd (m, n) = 1), then
Zm × Zn is cyclic (with generator (1, 1)).
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Theorem 11.5.

Theorem 11.5 (Continued).

Theorem 11.5. The group Zm × Zn is cyclic and is isomorphic to Zmn if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof (continued). Next, suppose m and n are not relatively prime That
is, suppose gcd (m, n) = d > 1. Then mn

d is divisible by both m and n.
Then for any (r , s) ∈ Zm × Zn we have

mn

d
(r , s) =

(
mn

d
r ,

mn

d
s

)
=

(
n

d
(mr) ,

m

d
(ns)

)
= (0, 0) .

So (r , s) generates a subgroup of Zm × Zn of order at most mn
d < mn and

since Zm × Zn has mn elements, (r , s) does not generate Zm × Zn and
since (r , s) ∈ Zm × Zn are arbitrary, no element of Zm × Zn generates the
group. That is, Zm × Zn is not cyclic. This proves that if gcd (m, n) 6= 1,
then Zm × Zn is not cyclic. The contrapositive of their statement is that if
Zm × Zn is cyclic, then gcd (m, n) = 1.

() Introduction to Modern Algebra July 6, 2023 6 / 10



Theorem 11.5.

Theorem 11.5 (Continued).

Theorem 11.5. The group Zm × Zn is cyclic and is isomorphic to Zmn if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof (continued). Next, suppose m and n are not relatively prime That
is, suppose gcd (m, n) = d > 1. Then mn

d is divisible by both m and n.
Then for any (r , s) ∈ Zm × Zn we have

mn

d
(r , s) =

(
mn

d
r ,

mn

d
s

)
=

(
n

d
(mr) ,

m

d
(ns)

)
= (0, 0) .

So (r , s) generates a subgroup of Zm × Zn of order at most mn
d < mn and

since Zm × Zn has mn elements, (r , s) does not generate Zm × Zn and
since (r , s) ∈ Zm × Zn are arbitrary, no element of Zm × Zn generates the
group. That is, Zm × Zn is not cyclic. This proves that if gcd (m, n) 6= 1,
then Zm × Zn is not cyclic. The contrapositive of their statement is that if
Zm × Zn is cyclic, then gcd (m, n) = 1.

() Introduction to Modern Algebra July 6, 2023 6 / 10



Theorem 11.9.

Theorem 11.9.

Theorem. 11.9. Let (a1, a2, . . . , an) ∈
∏

Gi . If ai is of finite order ri ,
(a1, a2, . . . , an) in

∏
Gi is the least common multiple of the

lcm (r1, r2, . . . , rn).

Proof. Suppose (a1, a2, . . . , an)
m = (e1, e2, . . . , en). Then

am
1 = e1, a

m
2 = e2, . . . , a

m
n = en. Then m must be a multiple of

r1, r2, . . . , rn. The smallest such m is lcm (r1, r2, . . . , rn) and so this the
order of (a1, a2, . . . , an).
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Theorem 11.15.

Theorem 11.15.

Theorem 11.15. The finite indecomposable abelian group are exactly the
cyclic groups with order a power of a prime.

Proof. Let G be a finite indecomposable abelian group. Then by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
11.12), G is isomorphic to a direct product of cyclic groups of prime power
order (and Betti number 0 since G is of finite under). Since G is by
hypothesis indecomposable, this direct product must consist of just one
cyclic group whose order is a power of a prime.

Now suppose G is a cyclic group of order a power of a prime, say (up to
isomorphic) Zpr . By the Fundamental Theorem, if Zpr is decomposable
then Zpr ∼= Zpi × Zpj where i = 1, j = 1, i + j = r . But by Theorem 11.5,

Zpr is not isomorphic to Zpi × Zpj since pi and pj are not relatively prime.
So Zpr is indecomposable.
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Theorem 11.16.

Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G , then
G has a subgroup of order m.

Proof. By the Fundamental Theorem, G is (isomorphic to the form)
Z(p1)

r1 × Z(p2)
r2 × · · · × Z(pn)

rn . where the primes pj need to be distinct.
Then order of G is |G | = (p1)

r1 (p2)
r2 · · · (pn)

rn so m being a division of
|G |, we must have m = (p1)

s1 (p2)
s2 · · · (pn)

sn for some 0 ≤ si ≤ ri for
i = 1, 2, . . . , n.

By Theorem 6.14, (pi )
ri−si ∈ Z(pi )

ri generates a subgroup

of Z(pi )
ri of order (pi )

gcd((pi )
ri ,(pi )

ri−si )
= (pi )

si . This subgroup a = 1 and

as = (pi )
ri−si × 1 = b = s is 〈(pi )

ri−si 〉. So the subgroup of order m is
〈(pi )

r1−s1〉 × 〈(p2)
r2−s2〉 × · · · × 〈(pn)

rn−sn〉.
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Theorem 11.17.

Theorem 11.17.

Theorem. 11.17. If M is a square free integer (that is, no prime factor of
m is of multiplicity greater than 1), then every abelian group of order m is
cyclic.

Proof. Let G be an abelian group of square free order m. So
m = p1p2 · · · pn where the pi are distinct. By the Fundamental Theorem,

G ∼= Zp1 × Zp2 × · · · × Zpn .

By Corollary 11.6, G ∼= Zp1p2···pn (since the pi , being prime, are pairwise
relatively prime) and so G is cyclic.
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