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Theorem 11.2

Theorem 11.2

Theorem 11.2. Let Gj, Gy, ..., G, be (multiplicative) groups. For
(a1,a@2,...,an), (b1, b2,...,by) €[]/ G1, define the (multiplicative)

binary operation (a1, a, ..., an) (b1, b2, ..., by) = (a1b1,a2bo, ..., anby) .
Then ]}, Gj is a group under this binary operation.
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Theorem 11.2

Theorem 11.2. Let Gj, Gy, ..., G, be (multiplicative) groups. For
(a1,a@2,...,an), (b1, b2,...,by) €[]/ G1, define the (multiplicative)
binary operation (a1, a, ..., an) (b1, b2, ..., by) = (a1b1,a2bo, ..., anby) .
Then ]}, Gj is a group under this binary operation.
Proof. Notice that, by definition, H7:1 Gy is closed under the introduced
binary operation. We now verify that [ [ G; satisfies the definition of
group. Associativity in [[ G; holds (G;) because:
(31, ag, ..., a,,) ((bl, bz, ey bn) (Cl, Coyenny Cn))
= (31, ag,..., a,,) (b1C1, /)2C27 ceey ann)

(a1 (bic1), a2 (b22) ;- -+, an (bncn))
= ((a1h1) c1, (a2b2) 2, , (anbn) cn) since each G; is a group

and so associativity holds in each G;

(alb1732b27"'anbn) (C1>C27"‘ 7Cn)
- ((317327' o 7an) (bla b2a e >bn)) (C17C27 e ;Cn) .
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Theorem 11.2 (continued).

Theorem 11.2. Let Gy, Gy, ..., G, be (multiplicative) groups. For
(a1,a2,...,an), (b1, b2,...,by) € [[I-; G1, define the (multiplicative)
binary operation (ai, az, ..., an) (b1, bz, ..., by) = (a1b1,a2ba, ..., anby).
Then []7_; G; is a group under this binary operation.

Proof (continued). Next, there is an identity in [ G;, namely

(e1,€, - ,en) where g is the identity in G;:

(e1, e, ,en)(a1,a2, -+ ,an) = (€131, €232, - - €nan) = (a1, a2, -+ , an)
for all (a1, a2, - ,an) € [[ Gi, and so Gy holds.
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Theorem 11.2 (continued).

Theorem 11.2. Let Gy, Gy, ..., G, be (multiplicative) groups. For
(a1,a2,...,an), (b1, b2,...,by) € [[I-; G1, define the (multiplicative)
binary operation (ai, az, ..., an) (b1, bz, ..., by) = (a1b1,a2ba, ..., anby).
Then []7_; G; is a group under this binary operation.

Proof (continued). Next, there is an identity in [ G;, namely
(e1,€, - ,en) where g is the identity in G;:

(e1, e, ,en)(a1,a2, -+ ,an) = (€131, €232, - - €nan) = (a1, a2, -+ , an)
for all (a1, a2, - ,an) € [[ Gi, and so Gy holds.

Finally, for (a1, a2, ,an) € [[ Gj, consider (afl, agl, e ,a;l) e[ G

(a;j € Gj has inverse a,-_1 € G; since G; is a group). Then

-1 -1 -1\ _ -1 -1 -1\ _
(31,32,"',8,,) dy ,d8y ;0 ,da, >_<alal ,d2dy 7,0t ,dpd, )—
(e1, €2, ,€p), and every element of [ G; has an inverse. So G3 holds
and [] G; is a group. O
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Theorem 11.5.

Theorem. 11.5. The group Z,, X Z, is cyclic and is isomorphic to Z,, if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).
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Theorem 11.5.

Theorem. 11.5. The group Z,, X Z, is cyclic and is isomorphic to Z,, if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof. Consider the cyclic subgroups of Z, x Z, generated by (1,1). By
Theorem 6.10 proof Case /I, the order of ((1,1) is the order of (1,1) in
Zm X ZLn. The order of (1,1) is k where k is the smallest natural number
such that (in additive notation) k (1,1) = (0,0) (where (0,0) is the
identity in Znm X Zy).
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Theorem 11.5.

Theorem. 11.5. The group Z,, X Z, is cyclic and is isomorphic to Z,, if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof. Consider the cyclic subgroups of Z, x Z, generated by (1,1). By
Theorem 6.10 proof Case /I, the order of ((1,1) is the order of (1,1) in
Zm X ZLn. The order of (1,1) is k where k is the smallest natural number
such that (in additive notation) k (1,1) = (0,0) (where (0,0) is the
identity in Znm X Zy).

Now k (1,1) = (k, k) = (0,0) only if k is both a multiple of m and a
multiple of n. The smallest such k is the least common multiple of m and
n, k =1lcm (m,n). If m and n are relatively prime, then by Exercise 6.47b,
k = mn. So if m and n are relatively prime (i.e., gcd (m, n) = 1), then
Zm X Zp is cyclic (with generator (1,1)).
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Theorem 11.5.

Theorem 11.5 (Continued).

Theorem 11.5. The group Z,, X Z, is cyclic and is isomorphic to Z,, if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof (continued). Next, suppose m and n are not relatively prime That
is, suppose gcd (m, n) = d > 1. Then 77 is divisible by both m and n.
Then for any (r,s) € Zm X Z, we have

M) = (5 s ) = (5. 5 (0s)) = 0.0).
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Theorem 11.5 (Continued).

Theorem 11.5. The group Z,, X Z, is cyclic and is isomorphic to Z,, if
and only if m and n are relatively prime (i.e., gcd (m, n) = 1).

Proof (continued). Next, suppose m and n are not relatively prime That
mn

is, suppose gcd (m, n) = d > 1. Then 77 is divisible by both m and n.
Then for any (r,s) € Zm X Z, we have

M) = (5 s ) = (5. 5 (0s)) = 0.0).

So (r,s) generates a subgroup of Zn, x Z, of order at most “J* < mn and
since Zm X Zn has mn elements, (r,s) does not generate Z, X Z, and
since (r,s) € Zm X Zp are arbitrary, no element of Z,, x Z, generates the
group. That is, Zpy X Zp is not cyclic. This proves that if gcd (m, n) # 1,
then Z,, X Z, is not cyclic. The contrapositive of their statement is that if
Zm X Ln is cyclic, then ged (m, n) = 1. O
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Theorem 11.9.

Theorem. 11.9. Let (a1, a2,...,a,) € [[ G;. If a; is of finite order r;,
(a1,a2,...,an) in [ G; is the least common multiple of the
lem (ri, r2, ...y ).
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Theorem 11.9.

Theorem 11.9.

Theorem. 11.9. Let (a1, a2,...,a,) € [[ G;. If a; is of finite order r;,
(a1,a2,...,an) in [ G; is the least common multiple of the
lem (ri, r2, ...y ).

Proof. Suppose (a1,a2,...,an)" = (e1, €2,...,€,). Then

a’ = e,y = e,...,a) = e,. Then m must be a multiple of

r,r,...,r. The smallest such mis lem (r1, ra, ..., r,) and so this the

order of (a1, az,...,an). O
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Theorem 11.15.

Theorem 11.15. The finite indecomposable abelian group are exactly the
cyclic groups with order a power of a prime.

Proof. Let G be a finite indecomposable abelian group. Then by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
11.12), G is isomorphic to a direct product of cyclic groups of prime power
order (and Betti number 0 since G is of finite under). Since G is by
hypothesis indecomposable, this direct product must consist of just one
cyclic group whose order is a power of a prime.
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Theorem 11.15.

Theorem 11.15. The finite indecomposable abelian group are exactly the
cyclic groups with order a power of a prime.

Proof. Let G be a finite indecomposable abelian group. Then by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
11.12), G is isomorphic to a direct product of cyclic groups of prime power
order (and Betti number 0 since G is of finite under). Since G is by
hypothesis indecomposable, this direct product must consist of just one
cyclic group whose order is a power of a prime.

Now suppose G is a cyclic group of order a power of a prime, say (up to
isomorphic) Z,-. By the Fundamental Theorem, if Z,- is decomposable
then Zpr = Z i X Zpj where i =1,j =1,i+j = r. But by Theorem 11.5,
Zpr is not isomorphic to Z,i X Z,; since p’ and p/ are not relatively prime.
So Zpr is indecomposable. O
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Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G, then
G has a subgroup of order m.
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Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G, then
G has a subgroup of order m.

Proof. By the Fundamental Theorem, G is (isomorphic to the form)
Lpyyn X Lpyy2 X -+ X Lp,ym. Where the primes p; need to be distinct.
Then order of G is |G| = (p1)™ (p2)™ -+ (pn)™ so m being a division of
|G|, we must have m = (p1)™ (p2)® -+ (pn)* for some 0 <'s; < r; for
i=1,2,....n
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Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G, then
G has a subgroup of order m.

Proof. By the Fundamental Theorem, G is (isomorphic to the form)
Lpyyn X Lpyy2 X -+ X Lp,ym. Where the primes p; need to be distinct.
Then order of G is |G| = (p1)™ (p2)™ -+ (pn)™ so m being a division of
|G|, we must have m = (p1)™ (p2)® -+ (pn)* for some 0 <'s; < r; for
i=1,2,...,n By Theorem 6.14, (p;)" ™™ € Z,,)7 generates a subgroup

of Zp,yi of order gcd((p,(pl) G = (pi)”. This subgroup a=1 and
a*=(p) " xl=b=sis ( pi)" ). So the subgroup of order m is
(Pi)™ %) x {(P2)7%) > -+ x ((pn)" ™). O
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Theorem 11.17.

Theorem. 11.17. If M is a square free integer (that is, no prime factor of
m is of multiplicity greater than 1), then every abelian group of order m is
cyclic.
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Theorem 11.17.

Theorem. 11.17. If M is a square free integer (that is, no prime factor of
m is of multiplicity greater than 1), then every abelian group of order m is
cyclic.

Proof. Let G be an abelian group of square free order m. So
m = p1p2--- pp Where the p; are distinct. By the Fundamental Theorem,

G = Zp, X Lpy, X -+ X Lp,.

By Corollary 11.6, G = Zp, p,...p, (since the p;, being prime, are pairwise
relatively prime) and so G is cyclic. O

Introduction to Modern Algebra July 6, 2023 10 / 10



	Theorem 11.2
	Theorem 11.5.
	Theorem 11.9.
	Theorem 11.15.
	Theorem 11.16.
	Theorem 11.17.

