Introduction to Modern Algebra

Part Part II. Permutations, Cosets, and Direct Products II.11. Direct Products and Finitely Generated Abelian Groups

Table of contents

(1) Theorem 11.2
(2) Theorem 11.5.
(3) Theorem 11.9.
(4) Theorem 11.15 .
(5) Theorem 11.16.
(6) Theorem 11.17.

Theorem 11.2

Theorem 11.2. Let $G_{1}, G_{2}, \ldots, G_{n}$ be (multiplicative) groups. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} G_{1}$, define the (multiplicative) binary operation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Then $\prod_{i=1}^{n} G_{i}$ is a group under this binary operation.
Proof. Notice that, by definition, $\prod_{i=1}^{n} G_{1}$ is closed under the introduced binary operation. We now verify that ΠG_{i} satisfies the definition of group. Associativity in ΠG_{i} holds $\left(G_{1}\right)$ because:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right) \\
= & \left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1} c_{1}, b_{2} c_{2}, \ldots, b_{n} c_{n}\right) \\
= & \left(a_{1}\left(b_{1} c_{1}\right), a_{2}\left(b_{2} c_{2}\right), \cdots, a_{n}\left(b_{n} c_{n}\right)\right) \\
= & \left(\left(a_{1} b_{1}\right) c_{1},\left(a_{2} b_{2}\right) c_{2}, \cdots,\left(a_{n} b_{n}\right) c_{n}\right) \text { since each } G_{i} \text { is a group } \\
& \text { and so associativity holds in each } G_{i} \\
= & \left(a_{1} b_{1}, a_{2} b_{2}, \cdots a_{n} b_{n}\right)\left(c_{1}, c_{2}, \cdots, c_{n}\right) \\
= & \left(\left(a_{1}, a_{2}, \cdots, a_{n}\right)\left(b_{1}, b_{2}, \cdots, b_{n}\right)\right)\left(c_{1}, c_{2}, \cdots, c_{n}\right) .
\end{aligned}
$$

Theorem 11.2

Theorem 11.2. Let $G_{1}, G_{2}, \ldots, G_{n}$ be (multiplicative) groups. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} G_{1}$, define the (multiplicative) binary operation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Then $\prod_{i=1}^{n} G_{i}$ is a group under this binary operation.
Proof. Notice that, by definition, $\prod_{i=1}^{n} G_{1}$ is closed under the introduced binary operation. We now verify that $\prod G_{i}$ satisfies the definition of group. Associativity in ΠG_{i} holds $\left(G_{1}\right)$ because:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(\left(b_{1}, b_{2}, \ldots, b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right) \\
= & \left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1} c_{1}, b_{2} c_{2}, \ldots, b_{n} c_{n}\right) \\
= & \left(a_{1}\left(b_{1} c_{1}\right), a_{2}\left(b_{2} c_{2}\right), \cdots, a_{n}\left(b_{n} c_{n}\right)\right) \\
= & \left(\left(a_{1} b_{1}\right) c_{1},\left(a_{2} b_{2}\right) c_{2}, \cdots,\left(a_{n} b_{n}\right) c_{n}\right) \text { since each } G_{i} \text { is a group } \\
& \text { and so associativity holds in each } G_{i} \\
= & \left(a_{1} b_{1}, a_{2} b_{2}, \cdots a_{n} b_{n}\right)\left(c_{1}, c_{2}, \cdots, c_{n}\right) \\
= & \left(\left(a_{1}, a_{2}, \cdots, a_{n}\right)\left(b_{1}, b_{2}, \cdots, b_{n}\right)\right)\left(c_{1}, c_{2}, \cdots, c_{n}\right) .
\end{aligned}
$$

Theorem 11.2 (continued).

Theorem 11.2. Let $G_{1}, G_{2}, \ldots, G_{n}$ be (multiplicative) groups. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} G_{1}$, define the (multiplicative) binary operation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Then $\prod_{i=1}^{n} G_{i}$ is a group under this binary operation.

Proof (continued). Next, there is an identity in $\prod G_{i}$, namely $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ where e_{i} is the identity in G_{i} :
$\left(e_{1}, e_{2}, \cdots, e_{n}\right)\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(e_{1} a_{1}, e_{2} a_{2}, \cdots e_{n} a_{n}\right)=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ for all $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \prod G_{i}$, and so G_{2} holds.

Finally, for $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \Pi G_{i}$, consider $\left(a_{1}^{-1}, a_{2}^{-1}, \cdots, a_{n}^{-1}\right) \in \Pi G_{i}$ ($a_{i} \in G_{i}$ has inverse $a_{i}^{-1} \in G_{i}$ since G_{i} is a group). Then $\left(a_{1}, a_{2}, \cdots, a_{n}\right)\left(a_{1}^{-1}, a_{2}^{-1}, \cdots, a_{n}^{-1}\right)=\left(a_{1} a_{1}^{-1}, a_{2} a_{2}^{-1}, \cdots, a_{n} a_{n}^{-1}\right)=$
$\left(e_{1}, e_{2}, \cdots, e_{n}\right)$, and every element of $\prod G_{i}$ has an inverse. So G_{3} holds and $\prod G_{i}$ is a group.

Theorem 11.2 (continued).

Theorem 11.2. Let $G_{1}, G_{2}, \ldots, G_{n}$ be (multiplicative) groups. For $\left(a_{1}, a_{2}, \ldots, a_{n}\right),\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \prod_{i=1}^{n} G_{1}$, define the (multiplicative) binary operation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Then $\prod_{i=1}^{n} G_{i}$ is a group under this binary operation.

Proof (continued). Next, there is an identity in $\prod G_{i}$, namely $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ where e_{i} is the identity in G_{i} :
$\left(e_{1}, e_{2}, \cdots, e_{n}\right)\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left(e_{1} a_{1}, e_{2} a_{2}, \cdots e_{n} a_{n}\right)=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ for all $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \prod G_{i}$, and so G_{2} holds.

Finally, for $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \prod G_{i}$, consider $\left(a_{1}^{-1}, a_{2}^{-1}, \cdots, a_{n}^{-1}\right) \in \prod G_{i}$ ($a_{i} \in G_{i}$ has inverse $a_{i}^{-1} \in G_{i}$ since G_{i} is a group). Then $\left(a_{1}, a_{2}, \cdots, a_{n}\right)\left(a_{1}^{-1}, a_{2}^{-1}, \cdots, a_{n}^{-1}\right)=\left(a_{1} a_{1}^{-1}, a_{2} a_{2}^{-1}, \cdots, a_{n} a_{n}^{-1}\right)=$ $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$, and every element of $\prod G_{i}$ has an inverse. So G_{3} holds and $\prod G_{i}$ is a group.

Theorem 11.5.

Theorem. 11.5. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic and is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$).

Proof. Consider the cyclic subgroups of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ generated by $(1,1)$. By Theorem 6.10 proof Case II, the order of $\langle(1,1\rangle$ is the order of $(1,1)$ in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. The order of $(1,1)$ is k where k is the smallest natural number such that (in additive notation) $k(1,1)=(0,0)$ (where $(0,0)$ is the identity in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$).

Theorem 11.5.

Theorem. 11.5. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic and is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$).

Proof. Consider the cyclic subgroups of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ generated by $(1,1)$. By Theorem 6.10 proof Case II, the order of $\langle(1,1\rangle$ is the order of $(1,1)$ in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. The order of $(1,1)$ is k where k is the smallest natural number such that (in additive notation) $k(1,1)=(0,0)$ (where $(0,0)$ is the identity in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$).

Now $k(1,1)=(k, k)=(0,0)$ only if k is both a multiple of m and a multiple of n. The smallest such k is the least common multiple of m and $n, k=\operatorname{lcm}(m, n)$. If m and n are relatively prime, then by Exercise $6.47 b$, $k=m n$. So if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$), then $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic (with generator $(1,1)$).

Theorem 11.5.

Theorem. 11.5. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic and is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$).

Proof. Consider the cyclic subgroups of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ generated by $(1,1)$. By Theorem 6.10 proof Case II, the order of $\langle(1,1\rangle$ is the order of $(1,1)$ in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$. The order of $(1,1)$ is k where k is the smallest natural number such that (in additive notation) $k(1,1)=(0,0)$ (where $(0,0)$ is the identity in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$).

Now $k(1,1)=(k, k)=(0,0)$ only if k is both a multiple of m and a multiple of n. The smallest such k is the least common multiple of m and $n, k=\operatorname{lcm}(m, n)$. If m and n are relatively prime, then by Exercise $6.47 b$, $k=m n$. So if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$), then $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic (with generator $(1,1)$).

Theorem 11.5 (Continued).

Theorem 11.5. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic and is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$).

Proof (continued). Next, suppose m and n are not relatively prime That is, suppose $\operatorname{gcd}(m, n)=d>1$. Then $\frac{m n}{d}$ is divisible by both m and n. Then for any $(r, s) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ we have

$$
\frac{m n}{d}(r, s)=\left(\frac{m n}{d} r, \frac{m n}{d} s\right)=\left(\frac{n}{d}(m r), \frac{m}{d}(n s)\right)=(0,0) .
$$

So (r, s) generates a subgroup of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ of order at most $\frac{m n}{d}<m n$ and since $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ has $m n$ elements, (r, s) does not generate $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and since $(r, s) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ are arbitrary, no element of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ generates the group. That is, $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is not cyclic. This proves that if $\operatorname{gcd}(m, n) \neq 1$, then $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is not cyclic. The contrapositive of their statement is that if $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic, then $\operatorname{gcd}(m, n)=1$.

Theorem 11.5 (Continued).

Theorem 11.5. The group $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic and is isomorphic to $\mathbb{Z}_{m n}$ if and only if m and n are relatively prime (i.e., $\operatorname{gcd}(m, n)=1$).

Proof (continued). Next, suppose m and n are not relatively prime That is, suppose $\operatorname{gcd}(m, n)=d>1$. Then $\frac{m n}{d}$ is divisible by both m and n. Then for any $(r, s) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ we have

$$
\frac{m n}{d}(r, s)=\left(\frac{m n}{d} r, \frac{m n}{d} s\right)=\left(\frac{n}{d}(m r), \frac{m}{d}(n s)\right)=(0,0) .
$$

So (r, s) generates a subgroup of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ of order at most $\frac{m n}{d}<m n$ and since $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ has $m n$ elements, (r, s) does not generate $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ and since $(r, s) \in \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ are arbitrary, no element of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ generates the group. That is, $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is not cyclic. This proves that if $\operatorname{gcd}(m, n) \neq 1$, then $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is not cyclic. The contrapositive of their statement is that if $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic, then $\operatorname{gcd}(m, n)=1$.

Theorem 11.9.

Theorem. 11.9. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \prod G_{i}$. If a_{i} is of finite order r_{i}, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in ΠG_{i} is the least common multiple of the $\operatorname{lcm}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.

Proof. Suppose $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{m}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Then $a_{1}^{m}=e_{1}, a_{2}^{m}=e_{2}, \ldots, a_{n}^{m}=e_{n}$. Then m must be a multiple of $r_{1}, r_{2}, \ldots, r_{n}$. The smallest such m is $\operatorname{Icm}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and so this the order of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Theorem 11.9.

Theorem. 11.9. Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \prod G_{i}$. If a_{i} is of finite order r_{i}, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in $\prod G_{i}$ is the least common multiple of the $\operatorname{lcm}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.

Proof. Suppose $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{m}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Then $a_{1}^{m}=e_{1}, a_{2}^{m}=e_{2}, \ldots, a_{n}^{m}=e_{n}$. Then m must be a multiple of $r_{1}, r_{2}, \ldots, r_{n}$. The smallest such m is $\operatorname{Icm}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and so this the order of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

Theorem 11.15.

Theorem 11.15. The finite indecomposable abelian group are exactly the cyclic groups with order a power of a prime.

Proof. Let G be a finite indecomposable abelian group. Then by the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem 11.12), G is isomorphic to a direct product of cyclic groups of prime power order (and Betti number 0 since G is of finite under). Since G is by hypothesis indecomposable, this direct product must consist of just one cyclic group whose order is a power of a prime.

Now suppose G is a cyclic group of order a power of a prime, say (up to isomorphic) $\mathbb{Z}_{p^{r}}$. By the Fundamental Theorem, if $\mathbb{Z}_{p^{r}}$ is decomposable then $\mathbb{Z}_{p^{r}} \cong \mathbb{Z}_{p^{i}} \times \mathbb{Z}_{p^{j}}$ where $i=1, j=1, i+j=r$. But by Theorem 11.5, $\mathbb{Z}_{p^{r}}$ is not isomorphic to $\mathbb{Z}_{p^{i}} \times \mathbb{Z}_{p^{i}}$ since p^{\prime} and p^{j} are not relatively prime. So $\mathbb{Z}_{p^{r}}$ is indecomposable.

Theorem 11.15.

Theorem 11.15. The finite indecomposable abelian group are exactly the cyclic groups with order a power of a prime.

Proof. Let G be a finite indecomposable abelian group. Then by the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem 11.12), G is isomorphic to a direct product of cyclic groups of prime power order (and Betti number 0 since G is of finite under). Since G is by hypothesis indecomposable, this direct product must consist of just one cyclic group whose order is a power of a prime.

Now suppose G is a cyclic group of order a power of a prime, say (up to isomorphic) $\mathbb{Z}_{p^{r}}$. By the Fundamental Theorem, if $\mathbb{Z}_{p^{r}}$ is decomposable then $\mathbb{Z}_{p^{r}} \cong \mathbb{Z}_{p^{i}} \times \mathbb{Z}_{p^{j}}$ where $i=1, j=1, i+j=r$. But by Theorem 11.5, $\mathbb{Z}_{p^{r}}$ is not isomorphic to $\mathbb{Z}_{p^{i}} \times \mathbb{Z}_{p^{j}}$ since p^{i} and p^{j} are not relatively prime. So $\mathbb{Z}_{p^{r}}$ is indecomposable.

Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G, then G has a subgroup of order m.

Proof. By the Fundamental Theorem, G is (isomorphic to the form) $\mathbb{Z}_{\left(p_{1}\right)^{r_{1}}} \times \mathbb{Z}_{\left(p_{2}\right)^{r_{2}}} \times \cdots \times \mathbb{Z}_{\left(p_{n}\right)^{r_{n}}}$. where the primes p_{j} need to be distinct. Then order of G is $|G|=\left(p_{1}\right)^{r_{1}}\left(p_{2}\right)^{r_{2}} \cdots\left(p_{n}\right)^{r_{n}}$ so m being a division of $|G|$, we must have $m=\left(p_{1}\right)^{s_{1}}\left(p_{2}\right)^{s_{2}} \cdots\left(p_{n}\right)^{s_{n}}$ for some $0 \leq s_{i} \leq r_{i}$ for $i=1,2, \ldots, n$.

Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G, then G has a subgroup of order m.

Proof. By the Fundamental Theorem, G is (isomorphic to the form) $\mathbb{Z}_{\left(p_{1}\right)^{r_{1}}} \times \mathbb{Z}_{\left(p_{2}\right)^{r_{2}}} \times \cdots \times \mathbb{Z}_{\left(p_{n}\right)^{r_{n}}}$. where the primes p_{j} need to be distinct. Then order of G is $|G|=\left(p_{1}\right)^{r_{1}}\left(p_{2}\right)^{r_{2}} \cdots\left(p_{n}\right)^{r_{n}}$ so m being a division of $|G|$, we must have $m=\left(p_{1}\right)^{s_{1}}\left(p_{2}\right)^{s_{2}} \cdots\left(p_{n}\right)^{s_{n}}$ for some $0 \leq s_{i} \leq r_{i}$ for $i=1,2, \ldots, n$. By Theorem 6.14, $\left(p_{i}\right)^{r_{i}-s_{i}} \in \mathbb{Z}_{\left(p_{i}\right)^{r_{i}}}$ generates a subgroup of $\mathbb{Z}_{\left(p_{i}\right)^{r_{i}}}$ of order $\frac{\left(p_{i}\right)}{\operatorname{gcd}\left(\left(p_{i}\right)^{r_{i}},\left(p_{i}\right)^{r_{i}-s_{i}}\right)}=\left(p_{i}\right)^{s_{i}}$. This subgroup $a=1$ and $a^{s}=\left(p_{i}\right)^{r_{i}-s_{i}} \times 1=b=s$ is $\left\langle\left(p_{i}\right)^{r_{i}-s_{i}}\right\rangle$. So the subgroup of order m is $\left\langle\left(p_{i}\right)^{r_{1}-s_{1}}\right\rangle \times\left\langle\left(p_{2}\right)^{r_{2}-s_{2}}\right\rangle \times \cdots \times\left\langle\left(p_{n}\right)^{r_{n}-s_{n}}\right\rangle$.

Theorem 11.16.

Theorem 11.16. If m divides the order of a finite abelian group G, then G has a subgroup of order m.

Proof. By the Fundamental Theorem, G is (isomorphic to the form) $\mathbb{Z}_{\left(p_{1}\right)^{r_{1}}} \times \mathbb{Z}_{\left(p_{2}\right)^{r_{2}}} \times \cdots \times \mathbb{Z}_{\left(p_{n}\right)^{r_{n}}}$. where the primes p_{j} need to be distinct. Then order of G is $|G|=\left(p_{1}\right)^{r_{1}}\left(p_{2}\right)^{r_{2}} \cdots\left(p_{n}\right)^{r_{n}}$ so m being a division of $|G|$, we must have $m=\left(p_{1}\right)^{s_{1}}\left(p_{2}\right)^{s_{2}} \cdots\left(p_{n}\right)^{s_{n}}$ for some $0 \leq s_{i} \leq r_{i}$ for $i=1,2, \ldots, n$. By Theorem 6.14, $\left(p_{i}\right)^{r_{i}-s_{i}} \in \mathbb{Z}_{\left(p_{i}\right)^{r_{i}}}$ generates a subgroup of $\mathbb{Z}_{\left(p_{i}\right)^{r_{i}}}$ of order $\frac{\left(p_{i}\right)}{\operatorname{gcd}\left(\left(p_{i}\right)^{r_{i}},\left(p_{i}\right)^{r_{i}-s_{i}}\right)}=\left(p_{i}\right)^{s_{i}}$. This subgroup $a=1$ and $a^{s}=\left(p_{i}\right)^{r_{i}-s_{i}} \times 1=b=s$ is $\left\langle\left(p_{i}\right)^{r_{i}-s_{i}}\right\rangle$. So the subgroup of order m is $\left\langle\left(p_{i}\right)^{r_{1}-s_{1}}\right\rangle \times\left\langle\left(p_{2}\right)^{r_{2}-s_{2}}\right\rangle \times \cdots \times\left\langle\left(p_{n}\right)^{r_{n}-s_{n}}\right\rangle$.

Theorem 11.17.

Theorem. 11.17. If M is a square free integer (that is, no prime factor of m is of multiplicity greater than 1), then every abelian group of order m is cyclic.

Proof. Let G be an abelian group of square free order m. So $m=p_{1} p_{2} \cdots p_{n}$ where the p_{i} are distinct. By the Fundamental Theorem,

$$
G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{n}}
$$

By Corollary 11.6, $G \cong \mathbb{Z}_{p_{1} p_{2} \cdots p_{n}}$ (since the p_{i}, being prime, are pairwise relatively prime) and so G is cyclic.

Theorem 11.17.

Theorem. 11.17. If M is a square free integer (that is, no prime factor of m is of multiplicity greater than 1), then every abelian group of order m is cyclic.

Proof. Let G be an abelian group of square free order m. So $m=p_{1} p_{2} \cdots p_{n}$ where the p_{i} are distinct. By the Fundamental Theorem,

$$
G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{n}}
$$

By Corollary 11.6, $G \cong \mathbb{Z}_{p_{1} p_{2} \cdots p_{n}}$ (since the p_{i}, being prime, are pairwise relatively prime) and so G is cyclic.

