Introduction to Modern Algebra

Part II. Permutations, Cosets, and Direct Products

II.8. Groups of Permutations

Table of contents

(1) Lemma
(2) Theorem 8.5.
(3) Lemma 8.15 .
(4) Theorem 8.16. Cayley's Theorem

Lemma

Lemma. If σ and τ are permutations on set A, then the composite function $\sigma \circ \tau$ (defined as $A \xrightarrow{\tau} A \xrightarrow{\sigma} A$ is a permutation on A. Normally we drop the composition symbol \circ and write $\sigma \circ \tau=\sigma \tau$. Notice that we must read this from right to left since $\sigma \tau$ is permutation τ first, followed by permutation σ.

Proof. We must only show that $\sigma \tau$ is one-to-one and onto. For one-to-one (see page 4 for the definition), suppose $(\sigma \tau)\left(a_{1}\right)=(\sigma \tau)\left(a_{2}\right)$; that is, $\sigma\left(\tau\left(a_{1}\right)\right)=\sigma\left(\tau\left(a_{2}\right)\right)$. Since σ is one-to-one, then the two "inputs" of τ must be the same and so $a_{1}=a_{2}$. Therefore $\sigma \tau$ is one to one.

Lemma

Lemma. If σ and τ are permutations on set A, then the composite function $\sigma \circ \tau$ (defined as $A \xrightarrow{\tau} A \xrightarrow{\sigma} A$ is a permutation on A. Normally we drop the composition symbol \circ and write $\sigma \circ \tau=\sigma \tau$. Notice that we must read this from right to left since $\sigma \tau$ is permutation τ first, followed by permutation σ.

Proof. We must only show that $\sigma \tau$ is one-to-one and onto. For one-to-one (see page 4 for the definition), suppose $(\sigma \tau)\left(a_{1}\right)=(\sigma \tau)\left(a_{2}\right)$; that is, $\sigma\left(\tau\left(a_{1}\right)\right)=\sigma\left(\tau\left(a_{2}\right)\right)$. Since σ is one-to-one, then the two "inputs" of τ must be the same and so $a_{1}=a_{2}$. Therefore $\sigma \tau$ is one to one.

For onto, let $a \in A$. Since σ is onto A, then there is some $a^{\prime} \in A$ such that $\sigma\left(a^{\prime}\right)=a$. Since τ is onto A, there is some $a^{\prime \prime} \in A$ such that $\tau\left(a^{\prime \prime}\right)=a^{\prime}$. Then $a=\sigma\left(a^{\prime}\right)=\sigma\left(\tau\left(a^{\prime \prime}\right)\right)=(\sigma \tau)\left(a^{\prime \prime}\right)$ and so $\sigma \tau$ is onto A.

Lemma

Lemma. If σ and τ are permutations on set A, then the composite function $\sigma \circ \tau$ (defined as $A \xrightarrow{\tau} A \xrightarrow{\sigma} A$ is a permutation on A. Normally we drop the composition symbol \circ and write $\sigma \circ \tau=\sigma \tau$. Notice that we must read this from right to left since $\sigma \tau$ is permutation τ first, followed by permutation σ.

Proof. We must only show that $\sigma \tau$ is one-to-one and onto. For one-to-one (see page 4 for the definition), suppose $(\sigma \tau)\left(a_{1}\right)=(\sigma \tau)\left(a_{2}\right)$; that is, $\sigma\left(\tau\left(a_{1}\right)\right)=\sigma\left(\tau\left(a_{2}\right)\right)$. Since σ is one-to-one, then the two "inputs" of τ must be the same and so $a_{1}=a_{2}$. Therefore $\sigma \tau$ is one to one.

For onto, let $a \in A$. Since σ is onto A, then there is some $a^{\prime} \in A$ such that $\sigma\left(a^{\prime}\right)=a$. Since τ is onto A, there is some $a^{\prime \prime} \in A$ such that $\tau\left(a^{\prime \prime}\right)=a^{\prime}$. Then $a=\sigma\left(a^{\prime}\right)=\sigma\left(\tau\left(a^{\prime \prime}\right)\right)=(\sigma \tau)\left(a^{\prime \prime}\right)$ and so $\sigma \tau$ is onto A.

Theorem 8.5.

Theorem 8.5. Let A be a nonempty set, and let S_{A} be the collection of all permutations of A. Then S_{A} is a group under permutation multiplication.

Proof. By Lemma, we know that the product of two permutations of set A are again a permutation of set A. So S_{A} is closed under multiplication.

Theorem 8.5.

Theorem 8.5. Let A be a nonempty set, and let S_{A} be the collection of all permutations of A. Then S_{A} is a group under permutation multiplication.

Proof. By Lemma, we know that the product of two permutations of set A are again a permutation of set A. So S_{A} is closed under multiplication. We now show that S_{A} is a group. Since permutations multiplication is defined as function composition and function composition is associative by Theorem 2.13, then S_{A} satisfies property G_{1} of the definition of group.

The identity permutation is ι defined as $\iota(a)=a$ for all $a \in A$, since $\sigma_{i}=\iota \sigma=\sigma$ for all $\sigma \in S_{A}$. So G_{2} is satisfied.

Theorem 8.5.

Theorem 8.5. Let A be a nonempty set, and let S_{A} be the collection of all permutations of A. Then S_{A} is a group under permutation multiplication.

Proof. By Lemma, we know that the product of two permutations of set A are again a permutation of set A. So S_{A} is closed under multiplication. We now show that S_{A} is a group. Since permutations multiplication is defined as function composition and function composition is associative by Theorem 2.13, then S_{A} satisfies property G_{1} of the definition of group.

The identity permutation is ι defined as $\iota(a)=a$ for all $a \in A$, since $\sigma_{i}=\iota \sigma=\sigma$ for all $\sigma \in S_{A}$. So G_{2} is satisfied.

For $\sigma \in S_{A}$, define σ^{\prime} on A as $\sigma^{\prime}\left(a^{\prime}\right)=a$ if and only if $\sigma^{\prime}(a)=a^{\prime}$ for each $a \in A$. Since σ is one-to-one and onto A, σ^{\prime} is well defined, one-to-one and onto.

Theorem 8.5.

Theorem 8.5. Let A be a nonempty set, and let S_{A} be the collection of all permutations of A. Then S_{A} is a group under permutation multiplication.

Proof. By Lemma, we know that the product of two permutations of set A are again a permutation of set A. So S_{A} is closed under multiplication. We now show that S_{A} is a group. Since permutations multiplication is defined as function composition and function composition is associative by Theorem 2.13, then S_{A} satisfies property G_{1} of the definition of group.

The identity permutation is ι defined as $\iota(a)=a$ for all $a \in A$, since $\sigma_{i}=\iota \sigma=\sigma$ for all $\sigma \in S_{A}$. So G_{2} is satisfied.

For $\sigma \in S_{A}$, define σ^{\prime} on A as $\sigma^{\prime}\left(a^{\prime}\right)=a$ if and only if $\sigma^{\prime}(a)=a^{\prime}$ for each $a \in A$. Since σ is one-to-one and onto A, σ^{\prime} is well defined, one-to-one and onto.

Theorem 8.5 (continued).

Theorem 8.5 Let A be a nonempty set, and let S_{A} be the collection of all permutations of A. Then S_{A} is a group under permutation multiplication.

Proof (continued). For each $a \in A$ we have

$$
\iota(a)=a=\sigma^{\prime}\left(a^{\prime}\right)=\sigma^{\prime}(\sigma(a))=\left(\sigma^{\prime} \sigma\right)(a)
$$

and

$$
\iota\left(a^{\prime}\right)=a^{\prime}=\sigma(a)=\sigma\left(\sigma^{\prime}\left(a^{\prime}\right)\right)=\left(\sigma \sigma^{\prime}\right)\left(a^{\prime}\right)
$$

and so $\sigma^{\prime} \sigma=\sigma \sigma^{\prime}=\iota$. That is, σ^{\prime} is the inverse of σ (we denote $\sigma^{\prime}=\sigma^{-1}$), and G_{3} is satisfied.

Lemma 8.15.

Lemma 8.15. Let G and G^{\prime} be groups and let $\varphi: G \rightarrow G^{\prime}$ be a one-to-one function such that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$. then $\varphi[G]$ is a subgroup of G^{\prime} and φ is an isomorphism of G with $\varphi[G]$.

Proof. We use Theorem 5.14. Let $x^{\prime}, y^{\prime} \in \varphi[G]$. Then for for some $x, y \in G$ we have $x^{\prime}=\varphi(x)$ and $y^{\prime}=\varphi(y)$. So $x, y \in G$ and so $x^{\prime} y^{\prime}=\varphi(x) \varphi(y)=\varphi(x y)$ (by hypothesis), and so $x^{\prime} y^{\prime} \in \varphi[G]$. That is, $\varphi[G]$ is closed under the binary operation of G^{\prime}.

Lemma 8.15.

Lemma 8.15. Let G and G^{\prime} be groups and let $\varphi: G \rightarrow G^{\prime}$ be a one-to-one function such that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$. then $\varphi[G]$ is a subgroup of G^{\prime} and φ is an isomorphism of G with $\varphi[G]$.

Proof. We use Theorem 5.14. Let $x^{\prime}, y^{\prime} \in \varphi[G]$. Then for for some $x, y \in G$ we have $x^{\prime}=\varphi(x)$ and $y^{\prime}=\varphi(y)$. So $x, y \in G$ and so $x^{\prime} y^{\prime}=\varphi(x) \varphi(y)=\varphi(x y)$ (by hypothesis), and so $x^{\prime} y^{\prime} \in \varphi[G]$. That is, $\varphi[G]$ is closed under the binary operation of G^{\prime}.

For e^{\prime} the identity of G^{\prime}, we have $e^{\prime} \varphi(e)=\varphi(e)=\varphi(e e)=\varphi(e) \varphi(e)$ where e is the identity of G. By right cancellation in G^{\prime}, we have $e^{\prime}=\varphi(e)$ and so $e^{\prime} \in \varphi[G]$.

Lemma 8.15.

Lemma 8.15. Let G and G^{\prime} be groups and let $\varphi: G \rightarrow G^{\prime}$ be a one-to-one function such that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$. then $\varphi[G]$ is a subgroup of G^{\prime} and φ is an isomorphism of G with $\varphi[G]$.

Proof. We use Theorem 5.14. Let $x^{\prime}, y^{\prime} \in \varphi[G]$. Then for for some $x, y \in G$ we have $x^{\prime}=\varphi(x)$ and $y^{\prime}=\varphi(y)$. So $x, y \in G$ and so $x^{\prime} y^{\prime}=\varphi(x) \varphi(y)=\varphi(x y)$ (by hypothesis), and so $x^{\prime} y^{\prime} \in \varphi[G]$. That is, $\varphi[G]$ is closed under the binary operation of G^{\prime}.

For e^{\prime} the identity of G^{\prime}, we have $e^{\prime} \varphi(e)=\varphi(e)=\varphi(e e)=\varphi(e) \varphi(e)$ where e is the identity of G. By right cancellation in G^{\prime}, we have $e^{\prime}=\varphi(e)$ and so $e^{\prime} \in \varphi[G]$.

Lemma 8.15 (continued).

Lemma 8.15. Let G and G^{\prime} be groups and let $\varphi: G \rightarrow G^{\prime}$ be a one-to-one function such that $\varphi(x y)=\varepsilon$

Proof (continued). For $x^{\prime} \in \varphi[G]$ where $x^{\prime}=\varphi(x)$, we have

$$
e^{\prime}=\varphi(e)=\varphi\left(x x^{-1}\right)=\varphi(x) \varphi\left(x^{-1}\right)=x^{\prime} \varphi\left(x^{-1}\right),
$$

so $\left(x^{\prime}\right)^{-1}=\varphi\left(x^{-1}\right) \in \varphi[G]$. So, by Theorem $5.14, \varphi[G]$ is a subgroup of G^{\prime}.

Finally, φ is one-to-one by hypothesis, φ is onto $\varphi[G]$ by the definition of $\varphi[G]$, and $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$ by hypothesis. So φ is an isomorphism between G and $\varphi[G]$.

Lemma 8.15 (continued).

Lemma 8.15. Let G and G^{\prime} be groups and let $\varphi: G \rightarrow G^{\prime}$ be a one-to-one function such that $\varphi(x y)=\varepsilon$

Proof (continued). For $x^{\prime} \in \varphi[G]$ where $x^{\prime}=\varphi(x)$, we have

$$
e^{\prime}=\varphi(e)=\varphi\left(x x^{-1}\right)=\varphi(x) \varphi\left(x^{-1}\right)=x^{\prime} \varphi\left(x^{-1}\right)
$$

so $\left(x^{\prime}\right)^{-1}=\varphi\left(x^{-1}\right) \in \varphi[G]$. So, by Theorem $5.14, \varphi[G]$ is a subgroup of G^{\prime}.

Finally, φ is one-to-one by hypothesis, φ is onto $\varphi[G]$ by the definition of $\varphi[G]$, and $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$ by hypothesis. So φ is an isomorphism between G and $\varphi[G]$.

Theorem 8.16. Cayley's Theorem

Theorem 8.16. Cayley's Theorem Every group is isomorphic to a group of permutations.

Proof. Let G be a group. By Lemma 8.15 we need only find a one-to-one function $\varphi: G \rightarrow S_{G}$ (the group of all permutations on group G) such that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$. Then we know that $\varphi[G]$ is a subgroup of the group of permutations S_{G}. \qquad as $\lambda_{x}(g)=x g$ for all $g \in G$. For $c \in G$, we have
$\lambda_{x}\left(x^{-1} c\right)=x\left(x^{-1} c\right)=c$ and so λ_{x} is onto G. If $\lambda_{x}(a)=\lambda_{x}(b)$, then $x a=x b$ and by left cancellation $a=b$. So λ_{x} is one-to-one. Therefore λ_{x} is a permutation of G and so $\lambda_{x} \in S_{G}$ for all $x \in G$.

Theorem 8.16. Cayley's Theorem

Theorem 8.16. Cayley's Theorem Every group is isomorphic to a group of permutations.

Proof. Let G be a group. By Lemma 8.15 we need only find a one-to-one function $\varphi: G \rightarrow S_{G}$ (the group of all permutations on group G) such that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$. Then we know that $\varphi[G]$ is a subgroup of the group of permutations S_{G}. For $x \in G$, define $\lambda_{x}: G \rightarrow G$ as $\lambda_{x}(g)=x g$ for all $g \in G$. For $c \in G$, we have $\lambda_{x}\left(x^{-1} c\right)=x\left(x^{-1} c\right)=c$ and so λ_{x} is onto G. If $\lambda_{x}(a)=\lambda_{x}(b)$, then $x a=x b$ and by left cancellation $a=b$. So λ_{x} is one-to-one. Therefore λ_{x} is a permutation of G and so $\lambda_{x} \in S_{G}$ for all $x \in G$.

Define $\varphi: G \rightarrow S_{G}$ as $\varphi(x)=\lambda_{x}$ for all $x \in G$. Suppose $\varphi(x)=\varphi(y)$.
Then $\lambda_{x}=\lambda_{y}$, and for $e \in G$ we get $\lambda_{x}(e)=\lambda_{y}(e)$ or $x e=y e$ or $x=y$ So φ is one-to-one.

Theorem 8.16. Cayley's Theorem

Theorem 8.16. Cayley's Theorem Every group is isomorphic to a group of permutations.

Proof. Let G be a group. By Lemma 8.15 we need only find a one-to-one function $\varphi: G \rightarrow S_{G}$ (the group of all permutations on group G) such that $\varphi(x y)=\varphi(x) \varphi(y)$ for all $x, y \in G$. Then we know that $\varphi[G]$ is a subgroup of the group of permutations S_{G}. For $x \in G$, define $\lambda_{x}: G \rightarrow G$ as $\lambda_{x}(g)=x g$ for all $g \in G$. For $c \in G$, we have $\lambda_{x}\left(x^{-1} c\right)=x\left(x^{-1} c\right)=c$ and so λ_{x} is onto G. If $\lambda_{x}(a)=\lambda_{x}(b)$, then $x a=x b$ and by left cancellation $a=b$. So λ_{x} is one-to-one. Therefore λ_{x} is a permutation of G and so $\lambda_{x} \in S_{G}$ for all $x \in G$.

Define $\varphi: G \rightarrow S_{G}$ as $\varphi(x)=\lambda_{x}$ for all $x \in G$. Suppose $\varphi(x)=\varphi(y)$. Then $\lambda_{x}=\lambda_{y}$, and for $e \in G$ we get $\lambda_{x}(e)=\lambda_{y}(e)$ or $x e=y e$ or $x=y$. So φ is one-to-one.

Theorem 8.16. Cayley's Theorem (continued)

Theorem 8.16. Cayley's Theorem (continued) Every group is isomorphic to a group of permutations.

Proof (continued). Next, for any $g \in G$ we have

$$
\lambda_{x y}(g)=(x y) g=x(y g)=x \lambda_{y}(g)=\lambda_{x}\left(\lambda_{y}(g)\right)=\left(\lambda_{x} \circ \lambda_{y}\right)(g) .
$$

Therefore $\lambda_{x} \circ \lambda_{y}=\lambda_{x} \lambda_{y}=\lambda_{x y}$ and so $\varphi(x) \varphi(y)=\varphi(x y)$. By Lemma $8.15, \varphi$ is an isomorphism between group G and group $\varphi[G]$, where $\varphi[G]$ is some subgroup of S_{G}. That is, G is isomorphic to some group of permutations.

