Introduction to Modern Algebra

Part Part II. Permutations, Cosets, and Direct Products II.9. Orbits, Cycles, and the Alternating Groups

Introduction to Modern Algebra

July 6, 2023 1 / 8

heorem 9.8.

Theorem 9.8.

Theorem. 9.8. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let B_1, B_2, \ldots, B_r be the disjoint orbits of σ . Let μ_i be the cycle defined by

$$\mu_i(x) = \begin{cases} \sigma(x) & \text{if } x \in B_i \\ x & \text{if } x \notin B_i \end{cases}.$$

So μ_i cycles around the elements of B_i while fixing the remaining elements of the finite set. Since the B_i 's are disjoint, then the cycles (technically, the cyclic rotation of) μ_i are disjoint. By definition, $\sigma = \mu_1 \mu_2 \cdots \mu_r$.

Lemm

Lemma

Lemma. Let σ be a permutation of set A. For $a,b\in A$, define $a\sim b$ if and only if $b=\sigma^n(A)$ for some $n\in\mathbb{Z}$. Then \sim is an equivalence relation on A.

Proof. We need to establish that \sim is reflexive, symmetric, and transitive. First $a \sim a$ since $a = \iota(a) = \sigma^0(a)$.

Next, if $a \sim b$ then $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$. Then $a = \sigma^{-n}(b)$ where $-n \in \mathbb{Z}$, and so $b \sim a$. So \sim is symmetric.

Finally, if $a \sim b$ and $b \sim c$, then $b = \sigma^n(a)$ and $c = \sigma^m(b)$ for some $n, m \in \mathbb{Z}$. Then

$$c = \sigma^{m}(b) = \sigma^{m}(\sigma^{n}(n)) = \sigma^{m+n}(a)$$

and $c \sim a$. So \sim is transitive.

Introduction to Modern Algebra July 6, 2023 3 /

Exercise 9.7

Exercise 9.7.

Exercise. 9.7. Calculate in S_8 the product $(1 \ 4 \ 5) \ (7) \ (2 \ 5 \ 7)$. Remember to and from right to left!

Solution. The cyclic notation implies that 2 is mapped to 5 and then 5 is mapped to 1. Similarly we get:

 $2 \rightarrow 5 \rightarrow 1,~5 \rightarrow 7 \rightarrow 8,~7 \rightarrow 2,~8 \rightarrow 7,~4 \rightarrow 5,~1 \rightarrow 4,~3 \rightarrow 3,~6 \rightarrow 6$ so the product in terms of disjoint cycles is (2 1 4 5 8 7)(3)(6). As a permutation this is

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 5 & 8 & 6 & 2 & 7 \end{pmatrix}.$$

Introduction to Modern Algebra July 6, 2023 4 / 8 () Introduction to Modern Algebra July 6, 2023 5 /

Exercise 9.10.

Exercise 9.10.

Exercise 9.10. Write as a disjoint product of cycles:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix} \dots$$

Solution. We simply follow orbits $1 \stackrel{\sigma}{\rightarrow} 8 \rightarrow 1$, etc., to get $(1\ 8)\ (2)\ (3\ 6\ 4)\ (5\ 7)$.

Introduction to Modern Algebra

July 6, 2023 6

()

Introduction to Modern Algebra

July 6, 2023

7 / 0

Theorem 9.20

Theorem 9.20.

Theorem. 9.20. If $n \ge 2$, then the collection of all even permutations of $\{1, 2, 3, ..., n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetry group S_n .

Proof. By Lemma, the set of all even permutations of S_n is a set A_n of size $\frac{n!}{2}$. Notice that the product of two even permutations is even, so A_n is closed under permutation multiplication. For $n \geq 2$, the identity ι in S_n is in A_n since $\iota = (1\ 2)\ (2\ 1)$. For any $\sigma \in A_n$, $\sigma = \tau_1\tau_2\cdots\tau_{2k}$ for some transpositions τ_i . Since a transpositions is its own inverse, $\sigma^{-1} = (\tau_1\tau_2\cdots\tau_{2k})^{-1} = \tau_{2k}^{-1}\cdots\tau_2^{-1}\tau_1^{-1} = \tau_{2k}\cdots\tau_2\tau_1$ and $\sigma^{-1} \in A_n$. So, by Theorem 5.14, A_n is a subgroup of S_n .

Lemma.

Lemma. For $n \geq 2$, the number of even permutations in S_n is $\frac{(n!)}{2}$.

Proof. Let A_n be the set of all even permutations in S_n and let B_n be the set of all odd permutations in S_n . Let τ be any given transposition in S_n . Define $\lambda_{\tau}:A_n\to B_n$ as $\lambda_{\tau}(\sigma)=\tau\sigma$ for all $\sigma\in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau}(\tau)=\tau\sigma$ is an odd permutation and so $\lambda_{\tau}:A_n\to B_n$. Suppose for $\sigma,\mu\in A_n$ that $\lambda_{\tau}(\sigma)=\lambda_{\tau}(\mu)$. Then $\tau\sigma=\tau\mu$ and by left cancellation, $\sigma=\mu$. Therefore λ_{τ} is one-to-one. Next, let $\rho\in B_n$. Then $\rho\tau$ is odd and so $\tau^{-1}\rho$ is even and $\tau^{-1}\rho\in A_n$ (since τ is a transposition, $\tau^{-1}=\tau$). So $\lambda_{\tau}(\tau^{-1}\rho)=\tau\tau^{-1}\rho=\rho$ and so λ_{τ} is onto B_n . So λ_{τ} is a one-to-one and onto mapping from A_n to B_n , and $|A_n|=|B_n|$. Since $S_n=A_nB_n$ and $|S_n|=n!$, then $|A_n|=\frac{n!}{2}$.