Introduction to Modern Algebra

Part Part II. Permutations, Cosets, and Direct Products II.9. Orbits, Cycles, and the Alternating Groups

Table of contents

Lemma

Lemma. Let σ be a permutation of set A. For $a, b \in A$, define $a \sim b$ if and only if $b = \sigma^n(A)$ for some $n \in \mathbb{Z}$. Then \sim is an equivalence relation on A.

Proof. We need to establish that \sim is reflexive, symmetric, and transitive. First $a \sim a$ since $a = \iota(a) = \sigma^0(a)$. Next, if $a \sim b$ then $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$. Then $a = \sigma^{-n}(b)$ where $-n \in \mathbb{Z}$, and so $b \sim a$. So \sim is symmetric. Finally, if $a \sim b$ and $b \sim c$, then $b = \sigma^n(a)$ and $c = \sigma^m(b)$ for some $n, m \in \mathbb{Z}$. Then

$$c = \sigma^{m}(b) = \sigma^{m}(\sigma^{n}(n)) = \sigma^{m+n}(a)$$

and $c \sim a$. So \sim is transitive.

Lemma

Lemma. Let σ be a permutation of set A. For $a, b \in A$, define $a \sim b$ if and only if $b = \sigma^n(A)$ for some $n \in \mathbb{Z}$. Then \sim is an equivalence relation on A.

Proof. We need to establish that \sim is reflexive, symmetric, and transitive. First $a \sim a$ since $a = \iota(a) = \sigma^0(a)$. Next, if $a \sim b$ then $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$. Then $a = \sigma^{-n}(b)$ where $-n \in \mathbb{Z}$, and so $b \sim a$. So \sim is symmetric. Finally, if $a \sim b$ and $b \sim c$, then $b = \sigma^n(a)$ and $c = \sigma^m(b)$ for some $n, m \in \mathbb{Z}$. Then

$$c = \sigma^{m}(b) = \sigma^{m}(\sigma^{n}(n)) = \sigma^{m+n}(a)$$

and $c \sim a$. So \sim is transitive.

Theorem 9.8.

Theorem. 9.8. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let B_1, B_2, \ldots, B_r be the disjoint orbits of σ . Let μ_i be the cycle defined by

$$\mu_{i}(x) = \begin{cases} \sigma(x) & \text{if } x \in B_{i} \\ x & \text{if } x \notin B_{i} \end{cases}$$

So μ_i cycles around the elements of B_i while fixing the remaining elements of the finite set. Since the B_i 's are disjoint, then the cycles (technically, the cyclic rotation of) μ_i are disjoint. By definition, $\sigma = \mu_1 \mu_2 \cdots \mu_r$.

Theorem 9.8.

Theorem. 9.8. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let B_1, B_2, \ldots, B_r be the disjoint orbits of σ . Let μ_i be the cycle defined by

$$\mu_{i}(x) = \begin{cases} \sigma(x) & \text{if } x \in B_{i} \\ x & \text{if } x \notin B_{i} \end{cases}$$

So μ_i cycles around the elements of B_i while fixing the remaining elements of the finite set. Since the B_i 's are disjoint, then the cycles (technically, the cyclic rotation of) μ_i are disjoint. By definition, $\sigma = \mu_1 \mu_2 \cdots \mu_r$.

Exercise 9.7.

Exercise. 9.7. Calculate in S_8 the product $(1 \ 4 \ 5)(7)(2 \ 5 \ 7)$. Remember to and from right to left!

Solution. The cyclic notation implies that 2 is mapped to 5 and then 5 is mapped to 1. Similarly we get: $2 \rightarrow 5 \rightarrow 1, 5 \rightarrow 7 \rightarrow 8, 7 \rightarrow 2, 8 \rightarrow 7, 4 \rightarrow 5, 1 \rightarrow 4, 3 \rightarrow 3, 6 \rightarrow 6$ so the product in terms of disjoint cycles is $(2 \ 1 \ 4 \ 5 \ 8 \ 7)(3)(6)$. As a permutation this is

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 5 & 8 & 6 & 2 & 7 \end{pmatrix}.$$

Exercise. 9.7. Calculate in S_8 the product $(1 \ 4 \ 5)(7)(2 \ 5 \ 7)$. Remember to and from right to left!

Solution. The cyclic notation implies that 2 is mapped to 5 and then 5 is mapped to 1. Similarly we get: $2 \rightarrow 5 \rightarrow 1, 5 \rightarrow 7 \rightarrow 8, 7 \rightarrow 2, 8 \rightarrow 7, 4 \rightarrow 5, 1 \rightarrow 4, 3 \rightarrow 3, 6 \rightarrow 6$ so the product in terms of disjoint cycles is $(2 \ 1 \ 4 \ 5 \ 8 \ 7)(3)(6)$. As a permutation this is

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 5 & 8 & 6 & 2 & 7 \end{pmatrix}.$$

Exercise 9.10.

Exercise 9.10. Write as a disjoint product of cycles:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}$$

Solution. We simply follow orbits $1 \xrightarrow{\sigma} 8 \rightarrow 1$, etc., to get (1 8) (2) (3 6 4) (5 7).

Exercise 9.10.

Exercise 9.10. Write as a disjoint product of cycles:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1 \end{pmatrix}.$$

Solution. We simply follow orbits $1 \xrightarrow{\sigma} 8 \rightarrow 1$, etc., to get $(1 \ 8) (2) (3 \ 6 \ 4) (5 \ 7)$.

Lemma. For $n \ge 2$, the number of even permutations in S_n is $\frac{(n!)}{2}$.

Proof. Let A_n be the set of all even permutations in S_n and let B_n be the set of all odd permutations in S_n . Let τ be any given transposition in S_n . Define $\lambda_{\tau} : A_n \to B_n$ as $\lambda_{\tau} (\sigma) = \tau \sigma$ for all $\sigma \in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau} (\tau) = \tau \sigma$ is an odd permutation and so $\lambda_{\tau} : A_n \to B_n$. Suppose for $\sigma, \mu \in A_n$ that $\lambda_{\tau} (\sigma) = \lambda_{\tau} (\mu)$. Then $\tau \sigma = \tau \mu$ and by left cancellation, $\sigma = \mu$. Therefore λ_{τ} is one-to-one.

Lemma.

Lemma. For $n \ge 2$, the number of even permutations in S_n is $\frac{(n!)}{2}$.

Proof. Let A_n be the set of all even permutations in S_n and let B_n be the set of all odd permutations in S_n . Let τ be any given transposition in S_n . Define $\lambda_{\tau} : A_n \to B_n$ as $\lambda_{\tau}(\sigma) = \tau \sigma$ for all $\sigma \in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau}(\tau) = \tau \sigma$ is an odd permutation and so $\lambda_{\tau}: A_n \to B_n$. Suppose for $\sigma, \mu \in A_n$ that $\lambda_{\tau}(\sigma) = \lambda_{\tau}(\mu)$. Then $\tau \sigma = \tau \mu$ and by left cancellation, $\sigma = \mu$. Therefore λ_{τ} is one-to-one. Next, let $\rho \in B_n$. Then $\rho\tau$ is odd and so $\tau^{-1}\rho$ is even and $\tau^{-1}\rho \in A_n$ (since τ is a transposition, $\tau^{-1} = \tau$). So $\lambda_{\tau}(\tau^{-1}\rho) = \tau\tau^{-1}\rho = \rho$ and so λ_{τ} is onto B_n . So λ_{τ} is a one-to-one and onto mapping from A_n to B_n , and $|A_n| = |B_n|$. Since $S_n = A_n B_n$ and $|S_n| = n!$, then $|A_n| = \frac{n!}{2}$.

Lemma.

Lemma. For $n \ge 2$, the number of even permutations in S_n is $\frac{(n!)}{2}$.

Proof. Let A_n be the set of all even permutations in S_n and let B_n be the set of all odd permutations in S_n . Let τ be any given transposition in S_n . Define $\lambda_{\tau} : A_n \to B_n$ as $\lambda_{\tau}(\sigma) = \tau \sigma$ for all $\sigma \in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau}(\tau) = \tau \sigma$ is an odd permutation and so $\lambda_{\tau}: A_n \to B_n$. Suppose for $\sigma, \mu \in A_n$ that $\lambda_{\tau}(\sigma) = \lambda_{\tau}(\mu)$. Then $\tau \sigma = \tau \mu$ and by left cancellation, $\sigma = \mu$. Therefore λ_{τ} is one-to-one. Next, let $\rho \in B_n$. Then $\rho\tau$ is odd and so $\tau^{-1}\rho$ is even and $\tau^{-1}\rho \in A_n$ (since τ is a transposition, $\tau^{-1} = \tau$). So $\lambda_{\tau}(\tau^{-1}\rho) = \tau \tau^{-1}\rho = \rho$ and so λ_{τ} is onto B_n . So λ_{τ} is a one-to-one and onto mapping from A_n to B_n , and $|A_n| = |B_n|$. Since $S_n = A_n B_n$ and $|S_n| = n!$, then $|A_n| = \frac{n!}{2}$.

Theorem. 9.20. If $n \ge 2$, then the collection of all even permutations of $\{1, 2, 3, ..., n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetry group S_n .

Proof. By Lemma, the set of all even permutations of S_n is a set A_n of size $\frac{n!}{2}$. Notice that the product of two even permutations is even, so A_n is closed under permutation multiplication. For $n \ge 2$, the identity ι in S_n is in A_n since $\iota = (1 \ 2) (2 \ 1)$. For any $\sigma \in A_n$, $\sigma = \tau_1 \tau_2 \cdots \tau_{2k}$ for some transpositions τ_i . Since a transpositions is its own inverse, $\sigma^{-1} = (\tau_1 \tau_2 \cdots \tau_{2k})^{-1} = \tau_{2k}^{-1} \cdots \tau_2^{-1} \tau_1^{-1} = \tau_{2k} \cdots \tau_2 \tau_1$ and $\sigma^{-1} \in A_n$. So, by Theorem 5.14, A_n is a subgroup of S_n .

Theorem. 9.20. If $n \ge 2$, then the collection of all even permutations of $\{1, 2, 3, ..., n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetry group S_n .

Proof. By Lemma, the set of all even permutations of S_n is a set A_n of size $\frac{n!}{2}$. Notice that the product of two even permutations is even, so A_n is closed under permutation multiplication. For $n \ge 2$, the identity ι in S_n is in A_n since $\iota = (1 \ 2) (2 \ 1)$. For any $\sigma \in A_n$, $\sigma = \tau_1 \tau_2 \cdots \tau_{2k}$ for some transpositions τ_i . Since a transpositions is its own inverse, $\sigma^{-1} = (\tau_1 \tau_2 \cdots \tau_{2k})^{-1} = \tau_{2k}^{-1} \cdots \tau_2^{-1} \tau_1^{-1} = \tau_{2k} \cdots \tau_2 \tau_1$ and $\sigma^{-1} \in A_n$. So, by Theorem 5.14, A_n is a subgroup of S_n .