Introduction to Modern Algebra

Part Part II. Permutations, Cosets, and Direct Products

 II.9. Orbits, Cycles, and the Alternating Groups

Table of contents

(1) Lemma
(2) Theorem 9.8.
(3) Exercise 9.7.
(4) Exercise 9.10 .
(5) Lemma.
(6) Theorem 9.20.

Lemma

Lemma. Let σ be a permutation of set A. For $a, b \in A$, define $a \sim b$ if and only if $b=\sigma^{n}(A)$ for some $n \in \mathbb{Z}$. Then \sim is an equivalence relation on A.

Proof. We need to establish that \sim is reflexive, symmetric, and transitive. First $a \sim a$ since $a=\iota(a)=\sigma^{0}(a)$.
Next, if $a \sim b$ then $b=\sigma^{n}(a)$ for some $n \in \mathbb{Z}$. Then $a=\sigma^{-n}(b)$ where $-n \in \mathbb{Z}$, and so $b \sim a$. So \sim is symmetric.
Finally, if $a \sim b$ and $b \sim c$, then $b=\sigma^{n}(a)$ and $c=\sigma^{m}(b)$ for some $n, m \in \mathbb{Z}$. Then

$$
c=\sigma^{m}(b)=\sigma^{m}\left(\sigma^{n}(n)\right)=\sigma^{m+n}(a)
$$

and $c \sim a$. So \sim is transitive.

Lemma

Lemma. Let σ be a permutation of set A. For $a, b \in A$, define $a \sim b$ if and only if $b=\sigma^{n}(A)$ for some $n \in \mathbb{Z}$. Then \sim is an equivalence relation on A.

Proof. We need to establish that \sim is reflexive, symmetric, and transitive. First $a \sim a$ since $a=\iota(a)=\sigma^{0}(a)$.
Next, if $a \sim b$ then $b=\sigma^{n}(a)$ for some $n \in \mathbb{Z}$. Then $a=\sigma^{-n}(b)$ where $-n \in \mathbb{Z}$, and so $b \sim a$. So \sim is symmetric.
Finally, if $a \sim b$ and $b \sim c$, then $b=\sigma^{n}(a)$ and $c=\sigma^{m}(b)$ for some $n, m \in \mathbb{Z}$. Then

$$
c=\sigma^{m}(b)=\sigma^{m}\left(\sigma^{n}(n)\right)=\sigma^{m+n}(a)
$$

and $c \sim a$. So \sim is transitive.

Theorem 9.8.

Theorem. 9.8. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let $B_{1}, B_{2}, \ldots, B_{r}$ be the disjoint orbits of σ. Let μ_{i} be the cycle defined by

$$
\mu_{i}(x)= \begin{cases}\sigma(x) & \text { if } x \in B_{i} \\ x & \text { if } x \notin B_{i}\end{cases}
$$

So μ_{i} cycles around the elements of B_{i} while fixing the remaining elements of the finite set. Since the B_{i} 's are disjoint, then the cycles (technically, the cyclic rotation of) μ_{i} are disjoint. By definition, $\sigma=\mu_{1} \mu_{2} \cdots \mu_{r}$.

Theorem 9.8.

Theorem. 9.8. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let $B_{1}, B_{2}, \ldots, B_{r}$ be the disjoint orbits of σ. Let μ_{i} be the cycle defined by

$$
\mu_{i}(x)=\left\{\begin{array}{ll}
\sigma(x) & \text { if } x \in B_{i} \\
x & \text { if } x \notin B_{i}
\end{array} .\right.
$$

So μ_{i} cycles around the elements of B_{i} while fixing the remaining elements of the finite set. Since the B_{i} 's are disjoint, then the cycles (technically, the cyclic rotation of) μ_{i} are disjoint. By definition, $\sigma=\mu_{1} \mu_{2} \cdots \mu_{r}$.

Exercise 9.7.

Exercise. 9.7. Calculate in S_{8} the product (145)(7)(257). Remember to and from right to left!

Solution. The cyclic notation implies that 2 is mapped to 5 and then 5 is mapped to 1 . Similarly we get:
$2 \rightarrow 5 \rightarrow 1,5 \rightarrow 7 \rightarrow 8,7 \rightarrow 2,8 \rightarrow 7,4 \rightarrow 5,1 \rightarrow 4,3 \rightarrow 3,6 \rightarrow 6$ so the product in terms of disjoint cycles is (214587)(3)(6). As a permutation this is

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 3 & 5 & 8 & 6 & 2 & 7
\end{array}\right) .
$$

Exercise 9.7.

Exercise. 9.7. Calculate in S_{8} the product (145)(7)(257). Remember to and from right to left!

Solution. The cyclic notation implies that 2 is mapped to 5 and then 5 is mapped to 1 . Similarly we get:
$2 \rightarrow 5 \rightarrow 1,5 \rightarrow 7 \rightarrow 8,7 \rightarrow 2,8 \rightarrow 7,4 \rightarrow 5,1 \rightarrow 4,3 \rightarrow 3,6 \rightarrow 6$ so the product in terms of disjoint cycles is (214587)(3)(6). As a permutation this is

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 3 & 5 & 8 & 6 & 2 & 7
\end{array}\right) .
$$

Exercise 9.10.

Exercise 9.10. Write as a disjoint product of cycles:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 6 & 3 & 7 & 4 & 5 & 1
\end{array}\right) .
$$

Solution. We simply follow orbits $1 \xrightarrow{\sigma} 8 \rightarrow 1$, etc., to get

 $(18)(2)(364)(57)$.
Exercise 9.10.

Exercise 9.10. Write as a disjoint product of cycles:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 2 & 6 & 3 & 7 & 4 & 5 & 1
\end{array}\right) .
$$

Solution. We simply follow orbits $1 \xrightarrow{\sigma} 8 \rightarrow 1$, etc., to get (18) (2) (3 64) (5 7).

Lemma.

Lemma. For $n \geq 2$, the number of even permutations in S_{n} is $\frac{(n!)}{2}$. Proof. Let A_{n} be the set of all even permutations in S_{n} and let B_{n} be the set of all odd permutations in S_{n}. Let τ be any given transposition in S_{n}. Define $\lambda_{\tau}: A_{n} \rightarrow B_{n}$ as $\lambda_{\tau}(\sigma)=\tau \sigma$ for all $\sigma \in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau}(\tau)=\tau \sigma$ is an odd permutation and so $\lambda_{\tau}: A_{n} \rightarrow B_{n}$. Suppose for $\sigma, \mu \in A_{n}$ that $\lambda_{\tau}(\sigma)=\lambda_{\tau}(\mu)$. Then $\tau \sigma=\tau \mu$ and by left cancellation, $\sigma=\mu$. Therefore λ_{τ} is one-to-one.

Lemma.

Lemma. For $n \geq 2$, the number of even permutations in S_{n} is $\frac{(n!)}{2}$.
Proof. Let A_{n} be the set of all even permutations in S_{n} and let B_{n} be the set of all odd permutations in S_{n}. Let τ be any given transposition in S_{n}. Define $\lambda_{\tau}: A_{n} \rightarrow B_{n}$ as $\lambda_{\tau}(\sigma)=\tau \sigma$ for all $\sigma \in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau}(\tau)=\tau \sigma$ is an odd permutation and so $\lambda_{\tau}: A_{n} \rightarrow B_{n}$. Suppose for $\sigma, \mu \in A_{n}$ that $\lambda_{\tau}(\sigma)=\lambda_{\tau}(\mu)$. Then $\tau \sigma=\tau \mu$ and by left cancellation, $\sigma=\mu$. Therefore λ_{τ} is one-to-one. Next, let $\rho \in B_{n}$. Then $\rho \tau$ is odd and so $\tau^{-1} \rho$ is even and $\tau^{-1} \rho \in A_{n}$ (since τ is a transposition, $\tau^{-1}=\tau$). So $\lambda_{\tau}\left(\tau^{-1} \rho\right)=\tau \tau^{-1} \rho=\rho$ and so λ_{τ} is onto B_{n}. So λ_{τ} is a one-to-one and onto mapping from A_{n} to B_{n}, and $\left|A_{n}\right|=\left|B_{n}\right|$. Since $S_{n}=A_{n} B_{n}$ and $\left|S_{n}\right|=n!$, then $\left|A_{n}\right|=\frac{n!}{2}$.

Lemma.

Lemma. For $n \geq 2$, the number of even permutations in S_{n} is $\frac{(n!)}{2}$.
Proof. Let A_{n} be the set of all even permutations in S_{n} and let B_{n} be the set of all odd permutations in S_{n}. Let τ be any given transposition in S_{n}. Define $\lambda_{\tau}: A_{n} \rightarrow B_{n}$ as $\lambda_{\tau}(\sigma)=\tau \sigma$ for all $\sigma \in A$. Since σ is an even permutation and τ is a transposition, then $\lambda_{\tau}(\tau)=\tau \sigma$ is an odd permutation and so $\lambda_{\tau}: A_{n} \rightarrow B_{n}$. Suppose for $\sigma, \mu \in A_{n}$ that $\lambda_{\tau}(\sigma)=\lambda_{\tau}(\mu)$. Then $\tau \sigma=\tau \mu$ and by left cancellation, $\sigma=\mu$. Therefore λ_{τ} is one-to-one. Next, let $\rho \in B_{n}$. Then $\rho \tau$ is odd and so $\tau^{-1} \rho$ is even and $\tau^{-1} \rho \in A_{n}$ (since τ is a transposition, $\tau^{-1}=\tau$). So $\lambda_{\tau}\left(\tau^{-1} \rho\right)=\tau \tau^{-1} \rho=\rho$ and so λ_{τ} is onto B_{n}. So λ_{τ} is a one-to-one and onto mapping from A_{n} to B_{n}, and $\left|A_{n}\right|=\left|B_{n}\right|$. Since $S_{n}=A_{n} B_{n}$ and $\left|S_{n}\right|=n!$, then $\left|A_{n}\right|=\frac{n!}{2}$.

Theorem 9.20.

Theorem. 9.20. If $n \geq 2$, then the collection of all even permutations of $\{1,2,3, \ldots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetry group S_{n}.

Proof. By Lemma, the set of all even permutations of S_{n} is a set A_{n} of size $\frac{n!}{2}$. Notice that the product of two even permutations is even, so A_{n} is closed under permutation multiplication. For $n \geq 2$, the identity ι in S_{n} is in A_{n} since $\iota=(12)(21)$. For any $\sigma \in A_{n}, \sigma=\tau_{1} \tau_{2} \cdots \tau_{2 k}$ for some transpositions τ_{i}. Since a transpositions is its own inverse,
$\sigma^{-1}=\left(\tau_{1} \tau_{2} \cdots \tau_{2 k}\right)^{-1}=\tau_{2 k}^{-1} \cdots \tau_{2}^{-1} \tau_{1}^{-1}=\tau_{2 k} \cdots \tau_{2} \tau_{1}$ and $\sigma^{-1} \in A_{n}$. So, by Theorem $5.14, A_{n}$ is a subgroup of S_{n}.

Theorem 9.20.

Theorem. 9.20. If $n \geq 2$, then the collection of all even permutations of $\{1,2,3, \ldots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetry group S_{n}.

Proof. By Lemma, the set of all even permutations of S_{n} is a set A_{n} of size $\frac{n!}{2}$. Notice that the product of two even permutations is even, so A_{n} is closed under permutation multiplication. For $n \geq 2$, the identity ι in S_{n} is in A_{n} since $\iota=(12)(21)$. For any $\sigma \in A_{n}, \sigma=\tau_{1} \tau_{2} \cdots \tau_{2 k}$ for some transpositions τ_{i}. Since a transpositions is its own inverse, $\sigma^{-1}=\left(\tau_{1} \tau_{2} \cdots \tau_{2 k}\right)^{-1}=\tau_{2 k}^{-1} \cdots \tau_{2}^{-1} \tau_{1}^{-1}=\tau_{2 k} \cdots \tau_{2} \tau_{1}$ and $\sigma^{-1} \in A_{n}$. So, by Theorem 5.14, A_{n} is a subgroup of S_{n}.

