Introduction to Modern Algebra

Part III. Homomorphisms and Factor Groups III.13. Homomorphisms

Introduction to Modern Algebra

July 14, 2023 1 / 3

Example 13.8

Example 13.8

Example 13.8. Let $G = G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_n$ be a direct product of groups G_1, G_2, \ldots, G_n . Define the *projection map* $\pi_i : G \to G_i$ where $\pi_i((g_1, g_2, \ldots, g_i, \ldots, g_n)) = g_i$. Then π_i is a homomorphism.

Proof. Let $(g_1,g_2,\ldots,g_i,\ldots,g_n),(h_1,h_2,\ldots,h_i,\ldots,h_n)\in G.$ Then $\pi_i((g_1,g_2,\ldots,g_i,\ldots,g_n)(h_1,h_2,\ldots,h_i,\ldots,h_n))$ = $\pi_i((g_1h_1,g_2h_2,\ldots,g_ih_i,\ldots,g_nh_n))$ using multiplication notation = $g_ih_i=\pi_i((g_1,g_2,\ldots,g_i,\ldots,g_n))\pi_i((h_1,h_2,\ldots,h_i,\ldots,h_n)).$ So π_i is a homomorphism, as claimed.

Example 13.2

Example 13.2

Example 13.2. Suppose $\varphi: G \to G'$ is a homomorphism and φ is onto G'. If G is abelian then G' is abelian. Notice that this shows how we can get structure preservation without necessarily having an isomorphism.

Proof. Let $a',b'\in G'$. Since φ is onto G', there are $a,b\in G$ such that $\varphi(a)=a'$ and $\varphi(b)=b'$. Now

$$a'b' = \varphi(a)\varphi(b) = \varphi(ab)$$
 since φ is a homomorphism
 $= \varphi(ba)$ since G is abelian
 $= \varphi(b)\varphi(a)$ since φ is a homomorphism
 $= b'a'$

So G' is abelian, as claimed.

Introduction to Modern Algebra July 14, 2023 3 / 1

Exercise 13.10

Exercise 13.10

Exercise 13.10. Let F be the *additive* group of all continuous functions mapping $\mathbb R$ into $\mathbb R$. Let $\mathbb R$ be the *additive* group of real numbers and let $\varphi:F\to\mathbb R$ be given by $\varphi(f)=\int_0^4 f(x)\,dx$. Then φ is a homomorphism.

Proof. Let $f_1, f_2 \in F$. Then

$$\varphi(f_1 + f_2) = \int_0^4 (f_1(x) + f_2(x)) dx$$

$$= \int_0^4 f_1(x) dx + \int_0^4 f_2(x) dx = \varphi(f_1) + \varphi(f_2).$$

So φ is a homomorphism.

Introduction to Modern Algebra July 14, 2023 4 / 16 () Introduction to Modern Algebra July 14, 2023 5 / 16

Theorem 13.12

Theorem 13.12. Let φ be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then $\varphi(e)$ is the identity element e' in G'.
- (2) If $a \in G$ then $\varphi(a^{-1}) = (\varphi(a)) 1$.
- (3) If H is a subgroup of G, then $\varphi[H]$ is a subgroup of G'.
- (4) If K' is a subgroup of G', then $\varphi^{-1}[K]$ is a subgroup of G.

Proof. Let φ be a homomorphism of G into G'.

- (1) We have $\varphi(a) = \varphi(ae) = \varphi(a)\varphi(e)$ and so $e' = (\varphi(a))^{-1}(\varphi(a)) = \varphi(a)^{-1}(\varphi(a)\varphi(e))$ or $e' = \varphi(e)$, as claimed.
- (2) We have $e' = \varphi(e) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1})$ and so $(\varphi(a))^{-1} = \varphi(a^{-1})$, as claimed.

Introduction to Modern Algebra

July 14, 2023 6 /

.

Theorem 13.12 (continued 2).

Theorem 13.12. Let φ be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then $\varphi(e)$ is the identity element e' in G'
- (2) If $a \in G$ then $\varphi(a^{-1}) = (\varphi(a)) 1$.
- (3) If H is a subgroup of G, then $\varphi[H]$ is a subgroup of G'.
- (4) If K' is a subgroup of G', then $\varphi^{-1}[K]$ is a subgroup of G.

Proof (continued). Let φ be a homomorphism of G into G'.

(4) Let K' < G' and consider $\varphi^{-1}[K]$. For any $a, b \in \varphi^{-1}[K]$ we have $\varphi(a), \varphi(b) \in K$ and so $\varphi(a) \varphi(b) \in K$; therefore $ab \in \varphi^{-1}[K]$. Since $e' \in K$ (K is a subgroup), then $\varphi(e) = e' \in K$ (by (1)) implies $e \in \varphi^{-1}[K]$. For all $a \in \varphi^{-1}[K]$ we have $\varphi(a)^{-1} \in K$ and since $\varphi(a)^{-1} = \varphi(a^{-1})$, by (2) $\varphi(a^{-1}) \in K$ and $a^{-1} \in \varphi^{-1}[K]$. So $\varphi^{-1}[K]$ is a subgroup of G by Theorem 5.14, as claimed.

Theorem 13.12 (continued 1)

Theorem 13.12. Let φ be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then $\varphi(e)$ is the identity element e' in G'.
- (2) If $a \in G$ then $\varphi(a^{-1}) = (\varphi(a)) 1$.
- (3) If H is a subgroup of G, then $\varphi[H]$ is a subgroup of G'.
- (4) If K' is a subgroup of G', then $\varphi^{-1}[K]$ is a subgroup of G.

Proof (continued). Let φ be a homomorphism of G into G'.

(3) Let H < G and consider $\varphi[H]$. For any $\varphi(a)$, $\varphi(b) \in \varphi[H]$ we have $\varphi(a) \varphi(b) = \varphi(ab) \in \varphi[H]$ (since $a, b \in H$ implies $ab \in H$). By (1) $e' = \varphi(e) \in \varphi[H]$ (since $e \in H$) and by (2) for all $\varphi(a) \in \varphi[H]$, $\varphi(a)^{-1} = \varphi(a^{-1}) = \varphi(a^{-1}) \in \varphi[H]$ (since $a \in H$ implies $a^{-1} \in H$). So $\varphi[H]$ is a subgroup of G' by Theorem 5.14, as claimed.

Introduction to Modern Algebra

Exercise 13.18

Exercise 13.18. Let $\varphi : \mathbb{Z} \to \mathbb{Z}_{10}$ be a homomorphism such that $\varphi(1) = 6$. Find $\operatorname{Ker}(\varphi)$.

Solution. Since $\langle 1 \rangle = \mathbb{Z}$, we can find all values of φ on \mathbb{Z} . The identity of \mathbb{Z}_{10} is 0, so any element of \mathbb{Z} mapped to $0 \pmod{10}$ is in the kernel of φ . Now for $i \in \mathbb{Z}$ we have

$$\varphi(j) = \varphi(j \cdot 1) = \underbrace{\varphi(1) + \varphi(1) + \dots + \varphi(1)}_{j \text{ times}} = j\varphi(1) = 6j.$$

So $\varphi(j) \equiv 0 \pmod{10}$ implies $6j \equiv 0 \pmod{10}$ or 6j = 10k for some k, or 3j = 5k for some k. We see that j must be a multiple of 5, or $j \equiv 0 \pmod{5}$. So $\text{Ker}(\varphi) = \{j \in \mathbb{Z} \mid j \equiv 0 \pmod{5}\}$.

July 14, 2023 7 / 16

Theorem 13.15

Theorem 13.15. Let $\varphi: G \to G'$ be a group homomorphism and let $H = \operatorname{Ker}(\varphi)$. Let $a \in G$. Then the set $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$ is the left coset aH of H, and is also the right coset Ha of H.

Proof. We need to show that

 $\varphi^{-1}[\varphi(a)] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH = Ha \text{ for each } a \in G, \text{ where } H = \operatorname{Ker}(\varphi).$ First we show this for the left coset aH. Suppose φ maps both a and x to the same element of G' (we must to show that a and x are in the same coset, namely aH). Then $\varphi(a) = \varphi(x)$ or

$$\varphi(\mathsf{a})^{-1}\varphi(\mathsf{x}) = \mathsf{e}' \tag{*}$$

or $\varphi(a^{-1})\varphi(x)=e'$ by Theorem 13.12(2), or $\varphi(a^{-1}x)=e'$ since φ is a homomorphism. So $a^{-1}x\in \mathrm{Ker}(\varphi)=H$ (by hypothesis) and so $a^{-1}x=h$ for some $h\in H$. That is $x=ah\in ah$. So if a and x are mapped by φ to the same element of G', then $a,x\in aH$. Therefore $\{x\in G\mid \varphi(x)=\varphi(a)\}\subseteq aH$.

Introduction to Modern Algebra

ily 14, 2023 10 / 3

Corollary 13.13

Corollary 13.18

Corollary 13.18. A group homomorphism $\varphi : G \to G'$ is a one-to-one map if and only if $Ker(\varphi) = \{e\}$.

Proof. If $Ker(\varphi) = \{e\}$ then for $a, b \in G$, $a \neq b$, we have by Theorem 13.15 that $\varphi(a) = aKer(\varphi) = \{a\}$ and $\varphi(b) = bKer(\varphi) = \{b\}$, and so $\varphi(a) \neq \varphi(b)$. That is, φ is one to one, as claimed.

Suppose φ is one to one. By Theorem 13.12(i), we have $\varphi(e) = e'$ and if φ is one-to-one then no other element of G is mapped to e'. That is, $\operatorname{Ker}(\varphi) = \{e\}$, as claimed.

Theorem 13.15 (continued).

Theorem 13.15. Let $\varphi: G \to G'$ be a group homomorphism and let $H = \operatorname{Ker}(\varphi)$. Let $a \in G$. Then the set $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$ is the left coset aH of H, and is also the right coset Ha of H.

Proof (continued). Next, let

$$y \in aH$$
, $(**)$

or y = ah for some $h \in H$. Then $\varphi(y) = \varphi(ah) = \varphi(a)\varphi(h) = \varphi(a)e' = \varphi(a)$ ($\varphi(h) = e'$ since $H = \operatorname{Ker}(e)$). So $y \in \{x \in G \mid \varphi(x) = \varphi(a)\}$ and $aH \subset \{x \in G \mid \varphi(x) = \varphi(a)\}$. Therefore $aH = \{x \in G \mid \varphi(x) = \varphi(a)\}$. To show the results for coset Ha, simply replace (*) with $\varphi(x)\varphi(a)^{-1} = e'$ and (**) with $y \in Ha$ (this is Exercise 13.52).

Introduction to Modern Algebra July

Evercise 13 3

Exercise 13.34

Exercise 13.34. Is there a nontrivial homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_4 ?

Solution. We take our lead from the picture for Theorem 13.15. We need to swap the cosets of $Ker(\varphi)$ into \mathbb{Z}_4 . One way to do this is to partition \mathbb{Z}_{12} into four cosets each of size three (another way is to use two cosets each of size six; or six cosets each of size two). This be achieved as follows:

$$\mathbb{Z}_{12}$$
 $\begin{pmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \end{pmatrix}$
 φ
 \downarrow
 \downarrow
 \downarrow
 \downarrow
 \downarrow

Then $\varphi(x) = x \pmod{4}$, $\operatorname{Ker}(\varphi) = \{0, 4, 8\}$, and the cosets are $1 \operatorname{Ker}(\varphi) = \{1, 5, 9\}$, $2 \operatorname{Ker}(\varphi) = \{2, 6, 10\}$, and $3 \operatorname{Ker}(\varphi) = \{3, 7, 11\}$. \square

Corollary 13.20

Corollary 13.20. If $\varphi: G \to G'$ is a homomorphism, then Ker (φ) is a normal subgroup of G.

Proof. We know by Theorem 13.15 that for $H = \text{Ker}(\varphi)$, left cosets and right cosets coincide. That is aH = Ha for all $a \in G$. So, by definition, $H = Ker(\varphi)$ is a normal subgroup.

Introduction to Modern Algebra

July 14, 2023 14 / 16

Exercise 13.50 (continued)

Exercise 13.50. Let $\varphi: G \to H$ be a group homomorphism. Then $\varphi[G]$ is abelian if and only if for all $x, y \in G$ we have $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$.

Proof (continued). Suppose $\varphi[G]$ is abelian. Let $x, y \in G$. Then

$$\varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x^{-1})\varphi(y^{-1}) \text{ since } \varphi$$
is a homomorphism
$$= \varphi(x)\varphi(x^{-1})\varphi(y)\varphi(y^{-1})$$
since $\varphi[G]$ is abelian
$$= \varphi(x)\varphi(x^{-1})\varphi(y)\varphi(y^{-1})$$
by Theorem 13.12 part (2)
$$= e'.$$

So $xyx^{-1}y^{-1} \in Ker(\varphi)$, as claimed.

Exercise 13.50

Exercise 13.50. Let $\varphi: G \to H$ be a group homomorphism. Then $\varphi[G]$ is abelian if and only if for all $x, y \in G$ we have $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$.

Proof. Let $x', y' \in \varphi[G]$. Then $x' = \varphi(x)$ and $y' = \varphi(y)$ for some $x, y \in G$. Now assuming $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$,

$$y'x' = \varphi(y)\varphi(x)$$

$$= e'\varphi(y)\varphi(x)$$

$$= \varphi(xyx^{-1}y^{-1})\varphi(y)\varphi(x)$$

$$= \varphi(xyx^{-1}y^{-1}yx) \text{ since } \varphi \text{ is a homomorphism}$$

$$= \varphi(xy)$$

$$= \varphi(x)\varphi(y)$$

$$= x'y'.$$

So, $\varphi[G]$ is abelian, as claimed.

Introduction to Modern Algebra July 14, 2023 15 / 16