Introduction to Modern Algebra

#### Part III. Homomorphisms and Factor Groups III.13. Homomorphisms





# Table of contents

- Example 13.2
- 2 Example 13.8
- 3 Exercise 13.10
  - 4 Theorem 13.12
- 5 Exercise 13.18
- 6 Theorem 13.15
- Corollary 13.18
- 8 Exercise 13.34
- Orollary 13.20
- D Exercise 13.50

**Example 13.2.** Suppose  $\varphi : G \to G'$  is a homomorphism and  $\varphi$  is onto G'. If G is abelian then G' is abelian. Notice that this shows how we can get structure preservation without necessarily having an isomorphism.

**Proof.** Let  $a', b' \in G'$ . Since  $\varphi$  is onto G', there are  $a, b \in G$  such that  $\varphi(a) = a'$  and  $\varphi(b) = b'$ . Now

$$a'b' = \varphi(a)\varphi(b) = \varphi(ab)$$
 since  $\varphi$  is a homomorphism  
=  $\varphi(ba)$  since  $G$  is abelian  
=  $\varphi(b)\varphi(a)$  since  $\varphi$  is a homomorphism  
=  $b'a'$ 

So G' is abelian, as claimed.

**Example 13.2.** Suppose  $\varphi : G \to G'$  is a homomorphism and  $\varphi$  is onto G'. If G is abelian then G' is abelian. Notice that this shows how we can get structure preservation without necessarily having an isomorphism.

**Proof.** Let  $a', b' \in G'$ . Since  $\varphi$  is onto G', there are  $a, b \in G$  such that  $\varphi(a) = a'$  and  $\varphi(b) = b'$ . Now

$$a'b' = \varphi(a)\varphi(b) = \varphi(ab)$$
 since  $\varphi$  is a homomorphism  
=  $\varphi(ba)$  since  $G$  is abelian  
=  $\varphi(b)\varphi(a)$  since  $\varphi$  is a homomorphism  
=  $b'a'$ 

So G' is abelian, as claimed.

**Example 13.8.** Let  $G = G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_n$  be a direct product of groups  $G_1, G_2, \ldots, G_n$ . Define the *projection map*  $\pi_i : G \to G_i$  where  $\pi_i((g_1, g_2, \ldots, g_i, \ldots, g_n)) = g_i$ . Then  $\pi_i$  is a homomorphism.

**Proof.** Let  $(g_1, g_2, ..., g_i, ..., g_n), (h_1, h_2, ..., h_i, ..., h_n) \in G$ . Then

 $\pi_i((g_1,g_2,\ldots,g_i,\ldots,g_n)(h_1,h_2,\ldots,h_i,\ldots,h_n))$ 

 $= \pi_i((g_1h_1, g_2h_2, \dots, g_ih_i, \dots, g_nh_n)) \text{ using multiplication notation}$  $= g_ih_i = \pi_i((g_1, g_2, \dots, g_i, \dots, g_n))\pi_i((h_1, h_2, \dots, h_i, \dots, h_n)).$ So  $\pi_i$  is a homomorphism, as claimed.

**Example 13.8.** Let  $G = G_1 \times G_2 \times \cdots \times G_i \times \cdots \times G_n$  be a direct product of groups  $G_1, G_2, \ldots, G_n$ . Define the *projection map*  $\pi_i : G \to G_i$  where  $\pi_i((g_1, g_2, \ldots, g_i, \ldots, g_n)) = g_i$ . Then  $\pi_i$  is a homomorphism.

**Proof.** Let  $(g_1, g_2, \dots, g_i, \dots, g_n), (h_1, h_2, \dots, h_i, \dots, h_n) \in G$ . Then  $\pi_i((g_1, g_2, \dots, g_i, \dots, g_n)(h_1, h_2, \dots, h_i, \dots, h_n))$   $= \pi_i((g_1h_1, g_2h_2, \dots, g_ih_i, \dots, g_nh_n))$  using multiplication notation  $= g_ih_i = \pi_i((g_1, g_2, \dots, g_i, \dots, g_n))\pi_i((h_1, h_2, \dots, h_i, \dots, h_n)).$ So  $\pi_i$  is a homomorphism, as claimed.

**Exercise 13.10.** Let F be the *additive* group of all continuous functions mapping  $\mathbb{R}$  into  $\mathbb{R}$ . Let  $\mathbb{R}$  be the *additive* group of real numbers and let  $\varphi: F \to \mathbb{R}$  be given by  $\varphi(f) = \int_0^4 f(x) dx$ . Then  $\varphi$  is a homomorphism.

**Proof.** Let  $f_1, f_2 \in F$ . Then

$$\varphi(f_1 + f_2) = \int_0^4 (f_1(x) + f_2(x)) \, dx$$
$$= \int_0^4 f_1(x) \, dx + \int_0^4 f_2(x) \, dx = \varphi(f_1) + \varphi(f_2)$$

So  $\varphi$  is a homomorphism.

**Exercise 13.10.** Let F be the *additive* group of all continuous functions mapping  $\mathbb{R}$  into  $\mathbb{R}$ . Let  $\mathbb{R}$  be the *additive* group of real numbers and let  $\varphi: F \to \mathbb{R}$  be given by  $\varphi(f) = \int_0^4 f(x) dx$ . Then  $\varphi$  is a homomorphism.

**Proof.** Let  $f_1, f_2 \in F$ . Then

$$\varphi(f_1 + f_2) = \int_0^4 (f_1(x) + f_2(x)) \, dx$$
$$= \int_0^4 f_1(x) \, dx + \int_0^4 f_2(x) \, dx = \varphi(f_1) + \varphi(f_2).$$

So  $\varphi$  is a homomorphism.

**Theorem 13.12.** Let  $\varphi$  be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then  $\varphi(e)$  is the identity element e' in G'.
- (2) If  $a \in G$  then  $\varphi(a^{-1}) = (\varphi(a)) 1$ .
- (3) If H is a subgroup of G, then  $\varphi[H]$  is a subgroup of G'.
- (4) If K' is a subgroup of G', then  $\varphi^{-1}[K]$  is a subgroup of G.

**Proof.** Let  $\varphi$  be a homomorphism of G into G'.

(1) We have  $\varphi(a) = \varphi(ae) = \varphi(a)\varphi(e)$  and so  $e' = (\varphi(a))^{-1}(\varphi(a)) = \varphi(a)^{-1}(\varphi(a)\varphi(e))$  or  $e' = \varphi(e)$ , as claimed.

**Theorem 13.12.** Let  $\varphi$  be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then  $\varphi(e)$  is the identity element e' in G'.
- (2) If  $a \in G$  then  $\varphi(a^{-1}) = (\varphi(a)) 1$ .
- (3) If H is a subgroup of G, then  $\varphi[H]$  is a subgroup of G'.
- (4) If K' is a subgroup of G', then  $\varphi^{-1}[K]$  is a subgroup of G.

**Proof.** Let  $\varphi$  be a homomorphism of G into G'.

We have φ(a) = φ(ae) = φ(a)φ(e) and so
 e' = (φ(a))^{-1}(φ(a)) = φ(a)^{-1}(φ(a)φ(e)) or e' = φ(e), as claimed.

 We have e' = φ(e) = φ(aa^{-1}) = φ(a)φ(a^{-1}) and so
 (φ(a))^{-1} = φ(a^{-1}), as claimed.

**Theorem 13.12.** Let  $\varphi$  be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then  $\varphi(e)$  is the identity element e' in G'.
- (2) If  $a \in G$  then  $\varphi(a^{-1}) = (\varphi(a)) 1$ .
- (3) If H is a subgroup of G, then  $\varphi[H]$  is a subgroup of G'.
- (4) If K' is a subgroup of G', then  $\varphi^{-1}[K]$  is a subgroup of G.

**Proof.** Let  $\varphi$  be a homomorphism of G into G'.

(1) We have 
$$\varphi(a) = \varphi(ae) = \varphi(a)\varphi(e)$$
 and so  
 $e' = (\varphi(a))^{-1}(\varphi(a)) = \varphi(a)^{-1}(\varphi(a)\varphi(e))$  or  $e' = \varphi(e)$ , as claimed.  
(2) We have  $e' = \varphi(e) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1})$  and so  
 $(\varphi(a))^{-1} = \varphi(a^{-1})$ , as claimed.

# Theorem 13.12 (continued 1)

**Theorem 13.12.** Let  $\varphi$  be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then  $\varphi(e)$  is the identity element e' in G'.
- (2) If  $a \in G$  then  $\varphi(a^{-1}) = (\varphi(a)) 1$ .
- (3) If H is a subgroup of G, then  $\varphi[H]$  is a subgroup of G'.
- (4) If K' is a subgroup of G', then  $\varphi^{-1}[K]$  is a subgroup of G.

**Proof (continued).** Let  $\varphi$  be a homomorphism of G into G'.

(3) Let H < G and consider  $\varphi[H]$ . For any  $\varphi(a), \varphi(b) \in \varphi[H]$  we have  $\varphi(a) \varphi(b) = \varphi(ab) \in \varphi[H]$  (since  $a, b \in H$  implies  $ab \in H$ ). By (1)  $e' = \varphi(e) \in \varphi[H]$  (since  $e \in H$ ) and by (2) for all  $\varphi(a) \in \varphi[H]$ ,  $\varphi(a)^{-1} = \varphi(a^{-1}) = \varphi(a^{-1}) \in \varphi[H]$  (since  $a \in H$  implies  $a^{-1} \in H$ ). So  $\varphi[H]$  is a subgroup of G' by Theorem 5.14, as claimed.

# Theorem 13.12 (continued 2).

**Theorem 13.12.** Let  $\varphi$  be a homomorphism of a group G into group G'.

- (1) If e is the identity in G, then  $\varphi(e)$  is the identity element e' in G'.
- (2) If  $a \in G$  then  $\varphi(a^{-1}) = (\varphi(a)) 1$ .
- (3) If H is a subgroup of G, then  $\varphi[H]$  is a subgroup of G'.
- (4) If K' is a subgroup of G', then  $\varphi^{-1}[K]$  is a subgroup of G.

**Proof (continued).** Let  $\varphi$  be a homomorphism of G into G'.

(4) Let K' < G' and consider  $\varphi^{-1}[K]$ . For any  $a, b \in \varphi^{-1}[K]$  we have  $\varphi(a), \varphi(b) \in K$  and so  $\varphi(a) \varphi(b) \in K$ ; therefore  $ab \in \varphi^{-1}[K]$ . Since  $e' \in K$  (K is a subgroup), then  $\varphi(e) = e' \in K$  (by (1)) implies  $e \in \varphi^{-1}[K]$ . For all  $a \in \varphi^{-1}[K]$  we have  $\varphi(a)^{-1} \in K$  and since  $\varphi(a)^{-1} = \varphi(a^{-1})$ , by (2)  $\varphi(a^{-1}) \in K$  and  $a^{-1} \in \varphi^{-1}[K]$ . So  $\varphi^{-1}[K]$  is a subgroup of G by Theorem 5.14, as claimed.

# **Exercise 13.18.** Let $\varphi : \mathbb{Z} \to \mathbb{Z}_{10}$ be a homomorphism such that $\varphi(1) = 6$ . Find Ker( $\varphi$ ).

**Solution.** Since  $\langle 1 \rangle = \mathbb{Z}$ , we can find all values of  $\varphi$  on  $\mathbb{Z}$ . The identity of  $\mathbb{Z}_{10}$  is 0, so any element of  $\mathbb{Z}$  mapped to 0(mod 10) is in the kernel of  $\varphi$ . Now for  $j \in \mathbb{Z}$  we have

$$\varphi(j) = \varphi(j \cdot 1) = \underbrace{\varphi(1) + \varphi(1) + \dots + \varphi(1)}_{j \text{ times}} = j\varphi(1) = 6j.$$

**Exercise 13.18.** Let  $\varphi : \mathbb{Z} \to \mathbb{Z}_{10}$  be a homomorphism such that  $\varphi(1) = 6$ . Find  $\text{Ker}(\varphi)$ .

**Solution.** Since  $\langle 1 \rangle = \mathbb{Z}$ , we can find all values of  $\varphi$  on  $\mathbb{Z}$ . The identity of  $\mathbb{Z}_{10}$  is 0, so any element of  $\mathbb{Z}$  mapped to 0(mod 10) is in the kernel of  $\varphi$ . Now for  $j \in \mathbb{Z}$  we have

$$\varphi(j) = \varphi(j \cdot 1) = \underbrace{\varphi(1) + \varphi(1) + \dots + \varphi(1)}_{j \text{ times}} = j\varphi(1) = 6j.$$

So  $\varphi(j) \equiv 0 \pmod{10}$  implies  $6j \equiv 0 \pmod{10}$  or 6j = 10k for some k, or 3j = 5k for some k. We see that j must be a multiple of 5, or  $j \equiv 0 \pmod{5}$ . So  $\operatorname{Ker}(\varphi) = \{j \in \mathbb{Z} \mid j \equiv 0 \pmod{5}\}$ .

**Exercise 13.18.** Let  $\varphi : \mathbb{Z} \to \mathbb{Z}_{10}$  be a homomorphism such that  $\varphi(1) = 6$ . Find  $\text{Ker}(\varphi)$ .

**Solution.** Since  $\langle 1 \rangle = \mathbb{Z}$ , we can find all values of  $\varphi$  on  $\mathbb{Z}$ . The identity of  $\mathbb{Z}_{10}$  is 0, so any element of  $\mathbb{Z}$  mapped to 0(mod 10) is in the kernel of  $\varphi$ . Now for  $j \in \mathbb{Z}$  we have

$$\varphi(j) = \varphi(j \cdot 1) = \underbrace{\varphi(1) + \varphi(1) + \dots + \varphi(1)}_{j \text{ times}} = j\varphi(1) = 6j.$$

So  $\varphi(j) \equiv 0 \pmod{10}$  implies  $6j \equiv 0 \pmod{10}$  or 6j = 10k for some k, or 3j = 5k for some k. We see that j must be a multiple of 5, or  $j \equiv 0 \pmod{5}$ . So  $\text{Ker}(\varphi) = \{j \in \mathbb{Z} \mid j \equiv 0 \pmod{5}\}$ .

**Theorem 13.15.** Let  $\varphi : G \to G'$  be a group homomorphism and let  $H = \text{Ker}(\varphi)$ . Let  $a \in G$ . Then the set  $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$  is the left coset aH of H, and is also the right coset Ha of H.

**Proof.** We need to show that  $\varphi^{-1}[\varphi(a)] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH = Ha$  for each  $a \in G$ , where  $H = \text{Ker}(\varphi)$ . First we show this for the left coset aH.

**Theorem 13.15.** Let  $\varphi : G \to G'$  be a group homomorphism and let  $H = \text{Ker}(\varphi)$ . Let  $a \in G$ . Then the set  $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$  is the left coset aH of H, and is also the right coset Ha of H.

**Proof.** We need to show that  $\varphi^{-1}[\varphi(a)] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH = Ha$  for each  $a \in G$ , where  $H = \text{Ker}(\varphi)$ . First we show this for the left coset aH. Suppose  $\varphi$  maps both a and x to the same element of G' (we must to show that a and x are in the same coset, namely aH). Then  $\varphi(a) = \varphi(x)$  or

$$\varphi(a)^{-1}\varphi(x) = e' \qquad (*)$$

or  $\varphi(a^{-1})\varphi(x) = e'$  by Theorem 13.12(2), or  $\varphi(a^{-1}x) = e'$  since  $\varphi$  is a homomorphism.

**Theorem 13.15.** Let  $\varphi : G \to G'$  be a group homomorphism and let  $H = \text{Ker}(\varphi)$ . Let  $a \in G$ . Then the set  $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$  is the left coset aH of H, and is also the right coset Ha of H.

**Proof.** We need to show that  $\varphi^{-1}[\varphi(a)] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH = Ha$  for each  $a \in G$ , where  $H = \text{Ker}(\varphi)$ . First we show this for the left coset aH. Suppose  $\varphi$  maps both a and x to the same element of G' (we must to show that a and x are in the same coset, namely aH). Then  $\varphi(a) = \varphi(x)$  or

$$\varphi(a)^{-1}\varphi(x) = e' \qquad (*)$$

or  $\varphi(a^{-1})\varphi(x) = e'$  by Theorem 13.12(2), or  $\varphi(a^{-1}x) = e'$  since  $\varphi$  is a homomorphism. So  $a^{-1}x \in \text{Ker}(\varphi) = H$  (by hypothesis) and so  $a^{-1}x = h$  for some  $h \in H$ . That is  $x = ah \in ah$ . So if a and x are mapped by  $\varphi$  to the same element of G', then  $a, x \in aH$ . Therefore  $\{x \in G \mid \varphi(x) = \varphi(a)\} \subseteq aH$ .

**Theorem 13.15.** Let  $\varphi : G \to G'$  be a group homomorphism and let  $H = \text{Ker}(\varphi)$ . Let  $a \in G$ . Then the set  $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$  is the left coset aH of H, and is also the right coset Ha of H.

**Proof.** We need to show that  $\varphi^{-1}[\varphi(a)] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH = Ha$  for each  $a \in G$ , where  $H = \text{Ker}(\varphi)$ . First we show this for the left coset aH. Suppose  $\varphi$  maps both a and x to the same element of G' (we must to show that a and x are in the same coset, namely aH). Then  $\varphi(a) = \varphi(x)$  or

$$\varphi(a)^{-1}\varphi(x) = e' \qquad (*)$$

or  $\varphi(a^{-1})\varphi(x) = e'$  by Theorem 13.12(2), or  $\varphi(a^{-1}x) = e'$  since  $\varphi$  is a homomorphism. So  $a^{-1}x \in \operatorname{Ker}(\varphi) = H$  (by hypothesis) and so  $a^{-1}x = h$  for some  $h \in H$ . That is  $x = ah \in ah$ . So if a and x are mapped by  $\varphi$  to the same element of G', then  $a, x \in aH$ . Therefore  $\{x \in G \mid \varphi(x) = \varphi(a)\} \subseteq aH$ .

# Theorem 13.15 (continued).

**Theorem 13.15.** Let  $\varphi : G \to G'$  be a group homomorphism and let  $H = \text{Ker}(\varphi)$ . Let  $a \in G$ . Then the set  $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$  is the left coset aH of H, and is also the right coset Ha of H.

Proof (continued). Next, let

$$y \in aH, \qquad (**)$$

or y = ah for some  $h \in H$ . Then  $\varphi(y) = \varphi(ah) = \varphi(a)\varphi(h) = \varphi(a)e' = \varphi(a) \ (\varphi(h) = e' \text{ since}$  H = Ker(e)). So  $y \in \{x \in G \mid \varphi(x) = \varphi(a)\}$  and  $aH \subset \{x \in G \mid \varphi(x) = \varphi(a)\}$ . Therefore  $aH = \{x \in G \mid \varphi(x) = \varphi(a)\}$ . To show the results for coset Ha, simply replace (\*) with  $\varphi(x)\varphi(a)^{-1} = e'$ and (\*\*) with  $y \in Ha$  (this is Exercise 13.52).

# Theorem 13.15 (continued).

**Theorem 13.15.** Let  $\varphi : G \to G'$  be a group homomorphism and let  $H = \text{Ker}(\varphi)$ . Let  $a \in G$ . Then the set  $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\}$  is the left coset aH of H, and is also the right coset Ha of H.

Proof (continued). Next, let

$$y \in aH, \qquad (**)$$

or y = ah for some  $h \in H$ . Then  $\varphi(y) = \varphi(ah) = \varphi(a)\varphi(h) = \varphi(a)e' = \varphi(a) \ (\varphi(h) = e' \text{ since}$  H = Ker(e)). So  $y \in \{x \in G \mid \varphi(x) = \varphi(a)\}$  and  $aH \subset \{x \in G \mid \varphi(x) = \varphi(a)\}$ . Therefore  $aH = \{x \in G \mid \varphi(x) = \varphi(a)\}$ . To show the results for coset Ha, simply replace (\*) with  $\varphi(x)\varphi(a)^{-1} = e'$ and (\*\*) with  $y \in Ha$  (this is Exercise 13.52).

## Corollary 13.18

**Corollary 13.18.** A group homomorphism  $\varphi : G \to G'$  is a one-to-one map if and only if  $Ker(\varphi) = \{e\}$ .

**Proof.** If  $\text{Ker}(\varphi) = \{e\}$  then for  $a, b \in G$ ,  $a \neq b$ , we have by Theorem 13.15 that  $\varphi(a) = a\text{Ker}(\varphi) = \{a\}$  and  $\varphi(b) = b\text{Ker}(\varphi) = \{b\}$ , and so  $\varphi(a) \neq \varphi(b)$ . That is,  $\varphi$  is one to one, as claimed.

## Corollary 13.18

**Corollary 13.18.** A group homomorphism  $\varphi : G \to G'$  is a one-to-one map if and only if  $\text{Ker}(\varphi) = \{e\}$ .

**Proof.** If  $\text{Ker}(\varphi) = \{e\}$  then for  $a, b \in G$ ,  $a \neq b$ , we have by Theorem 13.15 that  $\varphi(a) = a\text{Ker}(\varphi) = \{a\}$  and  $\varphi(b) = b\text{Ker}(\varphi) = \{b\}$ , and so  $\varphi(a) \neq \varphi(b)$ . That is,  $\varphi$  is one to one, as claimed.

Suppose  $\varphi$  is one to one. By Theorem 13.12(i), we have  $\varphi(e) = e'$  and if  $\varphi$  is one-to-one then no other element of G is mapped to e'. That is,  $\operatorname{Ker}(\varphi) = \{e\}$ , as claimed.



**Corollary 13.18.** A group homomorphism  $\varphi : G \to G'$  is a one-to-one map if and only if  $Ker(\varphi) = \{e\}$ .

**Proof.** If  $\text{Ker}(\varphi) = \{e\}$  then for  $a, b \in G$ ,  $a \neq b$ , we have by Theorem 13.15 that  $\varphi(a) = a\text{Ker}(\varphi) = \{a\}$  and  $\varphi(b) = b\text{Ker}(\varphi) = \{b\}$ , and so  $\varphi(a) \neq \varphi(b)$ . That is,  $\varphi$  is one to one, as claimed.

Suppose  $\varphi$  is one to one. By Theorem 13.12(i), we have  $\varphi(e) = e'$  and if  $\varphi$  is one-to-one then no other element of *G* is mapped to e'. That is,  $\text{Ker}(\varphi) = \{e\}$ , as claimed.



#### **Exercise 13.34.** Is there a nontrivial homomorphism from $\mathbb{Z}_{12}$ to $\mathbb{Z}_4$ ?

**Solution.** We take our lead from the picture for Theorem 13.15. We need to swap the cosets of  $\text{Ker}(\varphi)$  into  $\mathbb{Z}_4$ . One way to do this is to partition  $\mathbb{Z}_{12}$  into four cosets each of size three (another way is to use two cosets each of size six; or six cosets each of size two).

**Exercise 13.34.** Is there a nontrivial homomorphism from  $\mathbb{Z}_{12}$  to  $\mathbb{Z}_4$ ?

**Solution.** We take our lead from the picture for Theorem 13.15. We need to swap the cosets of  $\text{Ker}(\varphi)$  into  $\mathbb{Z}_4$ . One way to do this is to partition  $\mathbb{Z}_{12}$  into four cosets each of size three (another way is to use two cosets each of size six; or six cosets each of size two). This be achieved as follows:

|                   | 0            | 1            | 2            | 3            |
|-------------------|--------------|--------------|--------------|--------------|
| $\mathbb{Z}_{12}$ | 4            | 5            | 6            | 7            |
|                   | 8            | 9            | 10           | 11           |
| $\varphi$         | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| $\mathbb{Z}_4$    | 0            | 1            | 2            | 3            |

**Exercise 13.34.** Is there a nontrivial homomorphism from  $\mathbb{Z}_{12}$  to  $\mathbb{Z}_4$ ?

**Solution.** We take our lead from the picture for Theorem 13.15. We need to swap the cosets of  $\text{Ker}(\varphi)$  into  $\mathbb{Z}_4$ . One way to do this is to partition  $\mathbb{Z}_{12}$  into four cosets each of size three (another way is to use two cosets each of size six; or six cosets each of size two). This be achieved as follows:

|                   | 0            | 1            | 2            | 3            |
|-------------------|--------------|--------------|--------------|--------------|
| $\mathbb{Z}_{12}$ | 4            | 5            | 6            | 7            |
|                   | 8            | 9            | 10           | 11           |
|                   |              |              |              |              |
| $\varphi$         | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
|                   |              |              |              |              |
| $\mathbb{Z}_4$    | 0            | 1            | 2            | 3            |

Then  $\varphi(x) = x \pmod{4}$ , Ker $(\varphi) = \{0, 4, 8\}$ , and the cosets are  $1 \operatorname{Ker}(\varphi) = \{1, 5, 9\}, 2 \operatorname{Ker}(\varphi) = \{2, 6, 10\}, \text{ and } 3 \operatorname{Ker}(\varphi) = \{3, 7, 11\}.$ 

**Exercise 13.34.** Is there a nontrivial homomorphism from  $\mathbb{Z}_{12}$  to  $\mathbb{Z}_4$ ?

**Solution.** We take our lead from the picture for Theorem 13.15. We need to swap the cosets of  $\text{Ker}(\varphi)$  into  $\mathbb{Z}_4$ . One way to do this is to partition  $\mathbb{Z}_{12}$  into four cosets each of size three (another way is to use two cosets each of size six; or six cosets each of size two). This be achieved as follows:

|                   | 0            | 1 | 2            | 3            |
|-------------------|--------------|---|--------------|--------------|
| $\mathbb{Z}_{12}$ | 4            | 5 | 6            | 7            |
|                   | 8            | 9 | 10           | 11           |
| (0)               | I            | I | I            | I            |
| $\varphi$         | $\downarrow$ | Ŷ | $\downarrow$ | $\downarrow$ |
| $\mathbb{Z}_4$    | 0            | 1 | 2            | 3            |

Then  $\varphi(x) = x \pmod{4}$ , Ker $(\varphi) = \{0, 4, 8\}$ , and the cosets are 1 Ker $(\varphi) = \{1, 5, 9\}$ , 2 Ker $(\varphi) = \{2, 6, 10\}$ , and 3 Ker $(\varphi) = \{3, 7, 11\}$ .  $\Box$ 

# **Corollary 13.20.** If $\varphi : G \to G'$ is a homomorphism, then Ker $(\varphi)$ is a normal subgroup of G.

**Proof.** We know by Theorem 13.15 that for  $H = \text{Ker}(\varphi)$ , left cosets and right cosets coincide. That is aH = Ha for all  $a \in G$ . So, by definition,  $H = \text{Ker}(\varphi)$  is a normal subgroup.

**Corollary 13.20.** If  $\varphi : G \to G'$  is a homomorphism, then Ker  $(\varphi)$  is a normal subgroup of G.

**Proof.** We know by Theorem 13.15 that for  $H = \text{Ker}(\varphi)$ , left cosets and right cosets coincide. That is aH = Ha for all  $a \in G$ . So, by definition,  $H = \text{Ker}(\varphi)$  is a normal subgroup.



**Exercise 13.50.** Let  $\varphi : G \to H$  be a group homomorphism. Then  $\varphi[G]$  is abelian if and only if for all  $x, y \in G$  we have  $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ .

**Proof.** Let  $x', y' \in \varphi[G]$ . Then  $x' = \varphi(x)$  and  $y' = \varphi(y)$  for some  $x, y \in G$ . Now assuming  $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ ,

$$y'x' = \varphi(y)\varphi(x)$$
  
=  $e'\varphi(y)\varphi(x)$   
=  $\varphi(xyx^{-1}y^{-1})\varphi(y)\varphi(x)$   
=  $\varphi(xyx^{-1}y^{-1}yx)$  since  $\varphi$  is a homomorphism  
=  $\varphi(xy)$   
=  $\varphi(x)\varphi(y)$   
=  $x'y'$ .

So,  $\varphi[G]$  is abelian, as claimed.

**Exercise 13.50.** Let  $\varphi : G \to H$  be a group homomorphism. Then  $\varphi[G]$  is abelian if and only if for all  $x, y \in G$  we have  $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ .

**Proof.** Let  $x', y' \in \varphi[G]$ . Then  $x' = \varphi(x)$  and  $y' = \varphi(y)$  for some  $x, y \in G$ . Now assuming  $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ ,

$$y'x' = \varphi(y)\varphi(x)$$
  
=  $e'\varphi(y)\varphi(x)$   
=  $\varphi(xyx^{-1}y^{-1})\varphi(y)\varphi(x)$   
=  $\varphi(xyx^{-1}y^{-1}yx)$  since  $\varphi$  is a homomorphism  
=  $\varphi(xy)$   
=  $\varphi(x)\varphi(y)$   
=  $x'y'$ .

So,  $\varphi[G]$  is abelian, as claimed.

## Exercise 13.50 (continued)

**Exercise 13.50.** Let  $\varphi : G \to H$  be a group homomorphism. Then  $\varphi[G]$  is abelian if and only if for all  $x, y \in G$  we have  $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ .

**Proof (continued).** Suppose  $\varphi[G]$  is abelian. Let  $x, y \in G$ . Then

$$\begin{aligned} \varphi(xyx^{-1}y^{-1}) &= \varphi(x)\varphi(y)\varphi(x^{-1})\varphi(y^{-1}) \text{ since } \varphi \\ &\text{ is a homomorphism} \\ &= \varphi(x)\varphi(x^{-1})\varphi(y)\varphi(y^{-1}) \\ &\text{ since } \varphi[G] \text{ is abelian} \\ &= \varphi(x)\varphi(x^{-1})\varphi(y)\varphi(y^{-1}) \\ &\text{ by Theorem 13.12 part (2)} \\ &= e'. \end{aligned}$$

So  $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ , as claimed.