Introduction to Modern Algebra

Part 11l. Homomorphisms and Factor Groups
I11.14. Factor Groups
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Theorem 14.1

Theorem 14.1 (continued 1)

Proof (continued). We claim ¢ : G/H — ¢[G] is onto. Let ¢(g) o ¢[G]
for some g € G. Then ¢(gH) = g for coset ghH € G/H and ¢ is onto, as
claimed.

Next, we define a binary operation on G/H as: For aH,bH € G/H, define
(aH) - (bH) = (aH)(bH) = (ab)H. First, we show that - is well-defined
(that is, it is independent of the choice of a,b € G). Let a; € aH and

by € bH. Then a; = ahy and by = bhy for some hy, ho € H. There exists
hs € H such that hib = bhs since aH = Ha by Theorem 13.15 (this is
where the fact that the cosets coincide is used—in insuring that the binary
operation on G/H is well defined). Hence

aib; = (ahl)(bh2) = a(hlb)h2 = a(bh3)h2 = (ab)(h3h2) S (ab)H

So (a1b1)H C (ab)H and similarly (ab)H C (a1b1)H. That is,
(ab)H = (a1b1)H and - is well defined, as claimed.
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Theorem 14.1

Theorem 14.1

Theorem 14.1. Let ¢ : G — G’ be a group homomorphism with kernel
H = Ker(yp). Then the cosets of H = Ker(y). Then the cosests of

H = Ker(p) from a factor group, G/H, where (aH)(bH) = (ab)H. Also,
the map v : G/H — ¢[G] defined by p(aH) = ¢(a) is an isomorphism.
Both coset multiplication and p are well defined (i.e., independent of the
choices of a and b from the cosets).

Proof. Let ¢ : G — G’ be a homomorphism with H = Ker(y). By
Theorem 13.15, for any a € G we know that aH = Ha so when we speak
of “the cosets” of H, we can consider only the left cosets of H. Denote
the set of all cosets of H as G/H. We now show that ¢ : G/H — ¢[G] is
a one-to-one mapping. Let ¢(a), ¢(b) € ¢[G], ¢(a) # ¢(b). Then by
Theorem 13.15, o [{p(a)}] = {x € G | p(x) = ¢(a)} = aH. Since

©(a) # ¢(b) then aH and bH are disjoint. That is, aH # bH. So

¢ : G/H — ¢[G] is one-to-one, as claimed.
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Theorem 14.1

Theorem 14.1 (continued 2)

Proof (continued). We claim that since G is a group, the (G/H,") is a
group. First, ((aH) - (bH)) - (cH) = ((ab)H) - (cH) = (abc)H =

(aH) - ((bc)H) = (aH)(bH - cH) and so - is associative and G; holds.
Second, for all a € G, (eH) - (aH) = (ea)H = aH, so eH = H is the
identity of G/H and Gy holds. Third, for all a € G we have

(aH) - (a='H) = (aa~*)H = eH = H and G; holds. So (G/H,-) is a
group, as claimed.

Finally, we show that i : G/H — ¢[G] defined as p(aH) = ¢(a) is an
isomorphism. First, we must show that p is well-defined (that is,
independent of the choice of a € aH). Let a3 € aH. Then by Theorem
13.15, aH = ¢ [{p(a)}] = {x € G | p(x) = p(a)} = {x € G | p(x) =
©(a1)} = a1H. Therefore pu(aH) = ¢(a) = ¢(a1) = p(aiH) and p is well
defined. Notice next that u(aH) = p[aH] as defined above. Since

¢ : G/H — ¢[G] is one-to-one and onto as shown above, then

i: G/H — ¢[G] is one-to-one and onto. That is, 4 is an isomorphism
and G/H is isomorphic to ¢[G], as claimed. O
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Theorem 14.4

Theorem 14.4

Theorem 14.4. Let H be a subgroup of a group G. Then left coset
multiplication is well-defined by the equation (aH) - (bH) = (ab)H if and
only if H is a normal subgroup of G.

Proof. First, assume (aH) - (bH) = (ab)H is a well-defined binary
operation on left cosets. Let a € G. We now show aH = Ha (and so H is
a normal subgroup of G). Let x € aH. We have a=! € a7'H and so

(xH) - (a7tH) = (xa 1H). Also, a € aH and so

(aH) - (a*H) = (aa') = eH = H. If - is well defined then we must have
(xH) - (a=*H) = (aH) - (a=1H) (since both x and a can be used as
representatives of coset aH), that (xa=')H = eH = H and so

xa~l = h e H. Then x = ha and x € Ha. Therefore aH C Ha. Next, let
y € Ha (this part is Exercise 14.25). Then y = ha for some h € H. In this
left coset product (a~1H) - (aH), choose a~th € a~'H and a € aH for the
representatives to get (a~thH) - (aH) = (a—1ha)H and since

(a71H) - (aH) = (a~ta)H = eH = H (- is well defined), it must be that
a~tha = H for some h' € H.
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Corollary 14.5

Corollary 14.5

Corollary 14.5. Let H be a normal subgroup of G. Then the cosets of H
form a group G/H under the binary operation (aH) - (bH) = (ab)H.

Proof. First, (aH) - [(bH) - (cH)] = (aH) - ((bc)H) = (abc)H and
[(aH) - (bH)] - (cH) = ((ab)H) - (cH) = (abc)H, and so - is associative and
Gi holds.

Second, for all ah € G/H, (aH) - (eH) = (ae)H = aH and G holds (it is
sufficient to consider one sided identities and inverses by page 43 and
Exercise 4.38).

Third, for all aH € G/H, (aH)(a 1H) = (aa !)H = eH = H and
(aH)™! = (a~1)H; so G holds.
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Theorem 14.4

Theorem 14.4 (continued)

Proof (continued). Then, ha = ah’ for some h' € H. That is,

y = ha € aH. Therefore Ha C aH. Combining this with the result above,
gives aH = Ha and we have that the cosets of H coincide. Therefore, H is
a normal subgroup of G.

Second, suppose H is a normal subgroup of G and so left and right cosets
coincide. Consider a coset product ((ah1)H) - ((bha)H) = (ah1bh2)H. So
to show that - is well defined, we need to show that (ahibhy)H = (ab)H.
Now hib € Hb = bH (by hypothesis) and so h; b = bhs for some hs € H.
Therefore (ahy)(bha)H N (ab)H # (. Since the left cosets of H partition
group G (Section //.10) then different cosets disjoint. So

(ah1bho)H = (ab)H and (aH) - (bH) = ((am)H) - ((bh2)H). That is, - is
well defined. O
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Theorem 14.9

Theorem 14.9

Theorem 14.9. Let H be a normal subgroup of G. Then~y: G — G/H
given by v(x) = xH is a homomorphism with kernel H.

Proof. Let x,y € G. Then

v(xy) = (xy)H = (xH) - (yH) = v(x)v(y),

and so 7y is a homomorphism. Now xH = H if and only if x € H (recall
that distinct cosets are disjoint) and so v(x) = xH = H = v(e) if and only
if x € H—that is, the kernel of ~ is H. O
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Theorem 14.11. The Fundamental Homomorphism Theorem

Theorem 14.11. The Fundamental Homomorphism
Theorem

Theorem 14.11. The Fundamental Homomorphism Theorem.
Let ¢ : G — G’ be a group homomorphism with kernel H, and let
~v: G — G/H be the homomorphism given by v(g) = gH of Theorem
14.9. Then:

@ ¢[G] is a group,

@ 1 : G/H — ¢[G] given by (gH) = ©(g) is an isomorphism, and

© ©(g) = 1(7(g)) = o ~(g) for each g € G.
w is called the canonical (or natural) isomorphism between G/H and ¢[G].
~y is similarly the canonical (or natural) homomorphism between G and

G/H.

Proof. ©[G] is a group by Theorem 13.12 Part (3). p is an isomorphism
by Theorem 14.1. For g € G, u(v(g)) = 1(gH) = ¢(g) by the definitions
of 1 and ~. O
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Theorem 14.13

Theorem.14.13. Let G be group and H a subgroup of G. The following
are equivalent

1. gH = Hg for all g € G (that is, H is normal subgroup).
2. ghg7le Hforallgec Gand he H
3. gHg ! =Hforall g € G.

Proof. Suppose (2) holds and H is a subgroup of G such that ghg™! € H
forall g € G and all h € H. Then gHg™! = {ghg™' | h € H} C H for all
g € G. Let h € H. Then by the hypothesis of (2), g*hg € H, or

g 1hg = hy for some hy € H. Then h = ghig~! and h € gHg™!. So

H C gHg™!. Therefore H = gHg~! and (2) implies (3).
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Exercise 14.6

Exercise 14.6. Find the order of Z1, x Z15/((4,3)).

Solution. Notice that Zj» X Zg is abelian, and so H = ((4, 3)) is a normal
subgroup. Now, Z1y x Z1g/{((4,3)) is the group of cosets of H = ((4,3)).
Since |H| = 6 and all cosets of H are the same size (Section 11.10), then
the number of cosets is |Z12 X Z1g|/|H| = 12 x 18/6 = 36. In Section
[1.10, the number of cosets is the index (G : H) and equals |G|/|H| when
|G| is finite, so this technique works for general finite factor groups. O
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Theorem 14.13 (continued).

Proof (continued). Suppose (1) holds and H is a normal subgroup of
G:gH=Hgforallge G. Let g€ G and h€ G. Then for some hy € H
we have gh = hyg or ghg™! = h; and so ghg™ € H for all g € G and all
he H. Thatis, (1) implies (2).

Suppose (3) holds and gHg ™! = H, we similarly have g=*H C Hg~ ! or
equivalently Hg C gH. So gH = Hg and (3) implies (1). Hence we have
the implications (1) implies (2) implies (3) implies (1), and so all
statements (1), (2), (3) are equivalent, as claimed. O
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Exercise 13.29

Exercise 13.29. Let G be agroup and let g € G. Let iz : G — G be
defined by iz(x) = gxg~! for x € G. Then i, is an automorphism of G.

Proof. First, we show i, is a homomorphism for all g € G. Let x,y € G.
Then ig(xy) = g(xy)g ™' = g(xey)g ' = g(x(g 'g))yg ™" =
(gxe ") (evg ™) = ig(x)ig(¥)-

Next, suppose ig(x) = ig(y). Then

gxg ‘=gyg torxg '=yg !,

by left cancellation and x = y by right cancellation. So iz is one-to-one.
Finally let y € G. Then g7lyg € G and iz(g 'yg) = g(g 'yg)g 1 =y

and so ig is onto. Therefore ig is an isomorphism from G to G - that is is
ig is an automorphism of G. 0l
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