Introduction to Modern Algebra

Part III. Homomorphisms and Factor Groups III.14. Factor Groups

Table of contents

- 1 Theorem 14.1
- 2 Theorem 14.4
- 3 Corollary 14.5
 - 4 Theorem 14.9
- 5 Theorem 14.11. The Fundamental Homomorphism Theorem
- 6 Exercise 14.6
- **7** Theorem 14.13
- 8 Exercise 13.29

Theorem 14.1. Let $\varphi : G \to G'$ be a group homomorphism with kernel $H = \text{Ker}(\varphi)$. Then the cosets of $H = \text{Ker}(\varphi)$. Then the cosets of $H = \text{Ker}(\varphi)$ from a *factor group*, G/H, where (aH)(bH) = (ab)H. Also, the map $\mu : G/H \to \varphi[G]$ defined by $\mu(aH) = \varphi(a)$ is an isomorphism. Both coset multiplication and μ are well defined (i.e., independent of the choices of *a* and *b* from the cosets).

Proof. Let $\varphi : G \to G'$ be a homomorphism with $H = \text{Ker}(\varphi)$. By Theorem 13.15, for any $a \in G$ we know that aH = Ha so when we speak of "the cosets" of H, we can consider only the left cosets of H. Denote the set of all cosets of H as G/H. We now show that $\varphi : G/H \to \varphi[G]$ is a one-to-one mapping.

Theorem 14.1. Let $\varphi : G \to G'$ be a group homomorphism with kernel $H = \text{Ker}(\varphi)$. Then the cosets of $H = \text{Ker}(\varphi)$. Then the cosets of $H = \text{Ker}(\varphi)$ from a *factor group*, G/H, where (aH)(bH) = (ab)H. Also, the map $\mu : G/H \to \varphi[G]$ defined by $\mu(aH) = \varphi(a)$ is an isomorphism. Both coset multiplication and μ are well defined (i.e., independent of the choices of *a* and *b* from the cosets).

Proof. Let $\varphi : G \to G'$ be a homomorphism with $H = \text{Ker}(\varphi)$. By Theorem 13.15, for any $a \in G$ we know that aH = Ha so when we speak of "the cosets" of H, we can consider only the left cosets of H. Denote the set of all cosets of H as G/H. We now show that $\varphi : G/H \to \varphi[G]$ is a one-to-one mapping. Let $\varphi(a), \varphi(b) \in \varphi[G], \varphi(a) \neq \varphi(b)$. Then by Theorem 13.15, $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH$. Since $\varphi(a) \neq \varphi(b)$ then aH and bH are disjoint. That is, $aH \neq bH$. So $\varphi : G/H \to \varphi[G]$ is one-to-one, as claimed.

Theorem 14.1. Let $\varphi : G \to G'$ be a group homomorphism with kernel $H = \text{Ker}(\varphi)$. Then the cosets of $H = \text{Ker}(\varphi)$. Then the cosets of $H = \text{Ker}(\varphi)$ from a *factor group*, G/H, where (aH)(bH) = (ab)H. Also, the map $\mu : G/H \to \varphi[G]$ defined by $\mu(aH) = \varphi(a)$ is an isomorphism. Both coset multiplication and μ are well defined (i.e., independent of the choices of *a* and *b* from the cosets).

Proof. Let $\varphi : G \to G'$ be a homomorphism with $H = \text{Ker}(\varphi)$. By Theorem 13.15, for any $a \in G$ we know that aH = Ha so when we speak of "the cosets" of H, we can consider only the left cosets of H. Denote the set of all cosets of H as G/H. We now show that $\varphi : G/H \to \varphi[G]$ is a one-to-one mapping. Let $\varphi(a), \varphi(b) \in \varphi[G], \varphi(a) \neq \varphi(b)$. Then by Theorem 13.15, $\varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\} = aH$. Since $\varphi(a) \neq \varphi(b)$ then aH and bH are disjoint. That is, $aH \neq bH$. So $\varphi : G/H \to \varphi[G]$ is one-to-one, as claimed.

Theorem 14.1 (continued 1)

Proof (continued). We claim $\varphi : G/H \to \varphi[G]$ is onto. Let $\varphi(g) \circ \varphi[G]$ for some $g \in G$. Then $\varphi(gH) = g$ for coset $ghH \in G/H$ and φ is onto, as claimed.

Next, we define a binary operation on G/H as: For aH, $bH \in G/H$, define $(aH) \cdot (bH) = (aH)(bH) = (ab)H$. First, we show that \cdot is well-defined (that is, it is independent of the choice of $a, b \in G$). Let $a_1 \in aH$ and $b_1 \in bH$. Then $a_1 = ah_1$ and $b_1 = bh_2$ for some $h_1, h_2 \in H$. There exists $h_3 \in H$ such that $h_1b = bh_3$ since aH = Ha by Theorem 13.15 (this is where the fact that the cosets coincide is used—in insuring that the binary operation on G/H is well defined).

Theorem 14.1 (continued 1)

Proof (continued). We claim $\varphi : G/H \to \varphi[G]$ is onto. Let $\varphi(g) \circ \varphi[G]$ for some $g \in G$. Then $\varphi(gH) = g$ for coset $ghH \in G/H$ and φ is onto, as claimed.

Next, we define a binary operation on G/H as: For aH, $bH \in G/H$, define $(aH) \cdot (bH) = (aH)(bH) = (ab)H$. First, we show that \cdot is well-defined (that is, it is independent of the choice of $a, b \in G$). Let $a_1 \in aH$ and $b_1 \in bH$. Then $a_1 = ah_1$ and $b_1 = bh_2$ for some $h_1, h_2 \in H$. There exists $h_3 \in H$ such that $h_1b = bh_3$ since aH = Ha by Theorem 13.15 (this is where the fact that the cosets coincide is used—in insuring that the binary operation on G/H is well defined). Hence

$$a_1b_1=(ah_1)(bh_2)=a(h_1b)h_2=a(bh_3)h_2=(ab)(h_3h_2)\in (ab)H.$$

So $(a_1b_1)H \subset (ab)H$ and similarly $(ab)H \subset (a_1b_1)H$. That is, $(ab)H = (a_1b_1)H$ and \cdot is well defined, as claimed.

Theorem 14.1 (continued 1)

Proof (continued). We claim $\varphi : G/H \to \varphi[G]$ is onto. Let $\varphi(g) \circ \varphi[G]$ for some $g \in G$. Then $\varphi(gH) = g$ for coset $ghH \in G/H$ and φ is onto, as claimed.

Next, we define a binary operation on G/H as: For aH, $bH \in G/H$, define $(aH) \cdot (bH) = (aH)(bH) = (ab)H$. First, we show that \cdot is well-defined (that is, it is independent of the choice of $a, b \in G$). Let $a_1 \in aH$ and $b_1 \in bH$. Then $a_1 = ah_1$ and $b_1 = bh_2$ for some $h_1, h_2 \in H$. There exists $h_3 \in H$ such that $h_1b = bh_3$ since aH = Ha by Theorem 13.15 (this is where the fact that the cosets coincide is used—in insuring that the binary operation on G/H is well defined). Hence

$$a_1b_1 = (ah_1)(bh_2) = a(h_1b)h_2 = a(bh_3)h_2 = (ab)(h_3h_2) \in (ab)H.$$

So $(a_1b_1)H \subset (ab)H$ and similarly $(ab)H \subset (a_1b_1)H$. That is, $(ab)H = (a_1b_1)H$ and \cdot is well defined, as claimed.

Theorem 14.1 (continued 2)

Proof (continued). We claim that since *G* is a group, the $\langle G/H, \cdot \rangle$ is a group. First, $((aH) \cdot (bH)) \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H = (aH) \cdot ((bc)H) = (aH)(bH \cdot cH)$ and so \cdot is associative and G_1 holds. Second, for all $a \in G$, $(eH) \cdot (aH) = (ea)H = aH$, so eH = H is the identity of G/H and G_2 holds. Third, for all $a \in G$ we have $(aH) \cdot (a^{-1}H) = (aa^{-1})H = eH = H$ and G_3 holds. So $\langle G/H, \cdot \rangle$ is a group, as claimed.

Finally, we show that $\mu : G/H \to \varphi[G]$ defined as $\mu(aH) = \varphi(a)$ is an isomorphism. First, we must show that μ is well-defined (that is, independent of the choice of $a \in aH$). Let $a_1 \in aH$. Then by Theorem 13.15, $aH = \varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\} = \{x \in G \mid \varphi(x) = \varphi(a_1)\} = a_1H$.

Theorem 14.1 (continued 2)

Proof (continued). We claim that since *G* is a group, the $\langle G/H, \cdot \rangle$ is a group. First, $((aH) \cdot (bH)) \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H = (aH) \cdot ((bc)H) = (aH)(bH \cdot cH)$ and so \cdot is associative and G_1 holds. Second, for all $a \in G$, $(eH) \cdot (aH) = (ea)H = aH$, so eH = H is the identity of G/H and G_2 holds. Third, for all $a \in G$ we have $(aH) \cdot (a^{-1}H) = (aa^{-1})H = eH = H$ and G_3 holds. So $\langle G/H, \cdot \rangle$ is a group, as claimed.

Finally, we show that $\mu : G/H \to \varphi[G]$ defined as $\mu(aH) = \varphi(a)$ is an isomorphism. First, we must show that μ is well-defined (that is, independent of the choice of $a \in aH$). Let $a_1 \in aH$. Then by Theorem 13.15, $aH = \varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\} = \{x \in G \mid \varphi(x) = \varphi(a_1)\} = a_1H$. Therefore $\mu(aH) = \varphi(a) = \varphi(a_1) = \mu(a_1H)$ and μ is well defined. Notice next that $\mu(aH) = \varphi[aH]$ as defined above. Since $\varphi : G/H \to \varphi[G]$ is one-to-one and onto as shown above, then $\mu : G/H \to \varphi[G]$ is one-to-one and onto. That is, μ is an isomorphism and G/H is isomorphic to $\varphi[G]$, as claimed.

Theorem 14.1 (continued 2)

Proof (continued). We claim that since *G* is a group, the $\langle G/H, \cdot \rangle$ is a group. First, $((aH) \cdot (bH)) \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H = (aH) \cdot ((bc)H) = (aH)(bH \cdot cH)$ and so \cdot is associative and G_1 holds. Second, for all $a \in G$, $(eH) \cdot (aH) = (ea)H = aH$, so eH = H is the identity of G/H and G_2 holds. Third, for all $a \in G$ we have $(aH) \cdot (a^{-1}H) = (aa^{-1})H = eH = H$ and G_3 holds. So $\langle G/H, \cdot \rangle$ is a group, as claimed.

Finally, we show that $\mu : G/H \to \varphi[G]$ defined as $\mu(aH) = \varphi(a)$ is an isomorphism. First, we must show that μ is well-defined (that is, independent of the choice of $a \in aH$). Let $a_1 \in aH$. Then by Theorem 13.15, $aH = \varphi^{-1}[\{\varphi(a)\}] = \{x \in G \mid \varphi(x) = \varphi(a)\} = \{x \in G \mid \varphi(x) = \varphi(a_1)\} = a_1H$. Therefore $\mu(aH) = \varphi(a) = \varphi(a_1) = \mu(a_1H)$ and μ is well defined. Notice next that $\mu(aH) = \varphi[aH]$ as defined above. Since $\varphi : G/H \to \varphi[G]$ is one-to-one and onto as shown above, then $\mu : G/H \to \varphi[G]$ is one-to-one and onto. That is, μ is an isomorphism and G/H is isomorphic to $\varphi[G]$, as claimed.

()

Theorem 14.4. Let *H* be a subgroup of a group *G*. Then left coset multiplication is well-defined by the equation $(aH) \cdot (bH) = (ab)H$ if and only if *H* is a normal subgroup of *G*.

Proof. First, assume $(aH) \cdot (bH) = (ab)H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show aH = Ha (and so H is a normal subgroup of G). Let $x \in aH$. We have $a^{-1} \in a^{-1}H$ and so $(xH) \cdot (a^{-1}H) = (xa^{-1}H)$. Also, $a \in aH$ and so $(aH) \cdot (a^{1}H) = (aa^{1}) = eH = H$.

Theorem 14.4. Let *H* be a subgroup of a group *G*. Then left coset multiplication is well-defined by the equation $(aH) \cdot (bH) = (ab)H$ if and only if *H* is a normal subgroup of *G*.

Proof. First, assume $(aH) \cdot (bH) = (ab)H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show aH = Ha (and so H is a normal subgroup of G). Let $x \in aH$. We have $a^{-1} \in a^{-1}H$ and so $(xH) \cdot (a^{-1}H) = (xa^{-1}H)$. Also, $a \in aH$ and so $(aH) \cdot (a^{1}H) = (aa^{1}) = eH = H$. If \cdot is well defined then we must have $(xH) \cdot (a^{-1}H) = (aH) \cdot (a^{-1}H)$ (since both x and a can be used as representatives of coset aH), that $(xa^{-1})H = eH = H$ and so $xa^{-1} = h \in H$. Then x = ha and $x \in Ha$. Therefore $aH \subset Ha$.

Theorem 14.4. Let *H* be a subgroup of a group *G*. Then left coset multiplication is well-defined by the equation $(aH) \cdot (bH) = (ab)H$ if and only if *H* is a normal subgroup of *G*.

Proof. First, assume $(aH) \cdot (bH) = (ab)H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show aH = Ha (and so H is a normal subgroup of G). Let $x \in aH$. We have $a^{-1} \in a^{-1}H$ and so $(xH) \cdot (a^{-1}H) = (xa^{-1}H)$. Also, $a \in aH$ and so $(aH) \cdot (a^{1}H) = (aa^{1}) = eH = H$. If \cdot is well defined then we must have $(xH) \cdot (a^{-1}H) = (aH) \cdot (a^{-1}H)$ (since both x and a can be used as representatives of coset aH), that $(xa^{-1})H = eH = H$ and so $xa^{-1} = h \in H$. Then x = ha and $x \in Ha$. Therefore $aH \subset Ha$. Next, let $y \in Ha$ (this part is Exercise 14.25). Then y = ha for some $h \in H$. In this left coset product $(a^{-1}H) \cdot (aH)$, choose $a^{-1}h \in a^{-1}H$ and $a \in aH$ for the representatives to get $(a^{-1}hH) \cdot (aH) = (a^{-1}ha)H$ and since $(a^{-1}H) \cdot (aH) = (a^{-1}a)H = eH = H$ (\cdot is well defined), it must be that $a^{-1}ha = h'$ for some $h' \in H$.

Theorem 14.4. Let *H* be a subgroup of a group *G*. Then left coset multiplication is well-defined by the equation $(aH) \cdot (bH) = (ab)H$ if and only if *H* is a normal subgroup of *G*.

Proof. First, assume $(aH) \cdot (bH) = (ab)H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show aH = Ha (and so H is a normal subgroup of G). Let $x \in aH$. We have $a^{-1} \in a^{-1}H$ and so $(xH) \cdot (a^{-1}H) = (xa^{-1}H)$. Also, $a \in aH$ and so $(aH) \cdot (a^{1}H) = (aa^{1}) = eH = H$. If \cdot is well defined then we must have $(xH) \cdot (a^{-1}H) = (aH) \cdot (a^{-1}H)$ (since both x and a can be used as representatives of coset aH), that $(xa^{-1})H = eH = H$ and so $xa^{-1} = h \in H$. Then x = ha and $x \in Ha$. Therefore $aH \subset Ha$. Next, let $y \in Ha$ (this part is Exercise 14.25). Then y = ha for some $h \in H$. In this left coset product $(a^{-1}H) \cdot (aH)$, choose $a^{-1}h \in a^{-1}H$ and $a \in aH$ for the representatives to get $(a^{-1}hH) \cdot (aH) = (a^{-1}ha)H$ and since $(a^{-1}H) \cdot (aH) = (a^{-1}a)H = eH = H$ (\cdot is well defined), it must be that $a^{-1}ha = h'$ for some $h' \in H$.

Theorem 14.4 (continued)

Proof (continued). Then, ha = ah' for some $h' \in H$. That is, $y = ha \in aH$. Therefore $Ha \subset aH$. Combining this with the result above, gives aH = Ha and we have that the cosets of H coincide. Therefore, H is a normal subgroup of G.

Second, suppose H is a normal subgroup of G and so left and right cosets coincide. Consider a coset product $((ah_1)H) \cdot ((bh_2)H) = (ah_1bh_2)H$. So to show that \cdot is well defined, we need to show that $(ah_1bh_2)H = (ab)H$.

Theorem 14.4 (continued)

Proof (continued). Then, ha = ah' for some $h' \in H$. That is, $y = ha \in aH$. Therefore $Ha \subset aH$. Combining this with the result above, gives aH = Ha and we have that the cosets of H coincide. Therefore, H is a normal subgroup of G.

Second, suppose *H* is a normal subgroup of *G* and so left and right cosets coincide. Consider a coset product $((ah_1)H) \cdot ((bh_2)H) = (ah_1bh_2)H$. So to show that \cdot is well defined, we need to show that $(ah_1bh_2)H = (ab)H$. Now $h_1b \in Hb = bH$ (by hypothesis) and so $h_1b = bh_3$ for some $h_3 \in H$. Therefore $(ah_1)(bh_2)H \cap (ab)H \neq \emptyset$. Since the left cosets of *H* partition group *G* (Section *II*.10) then different cosets disjoint. So $(ah_1bh_2)H = (ab)H$ and $(aH) \cdot (bH) = ((ah_1)H) \cdot ((bh_2)H)$. That is, \cdot is well defined.

Theorem 14.4 (continued)

Proof (continued). Then, ha = ah' for some $h' \in H$. That is, $y = ha \in aH$. Therefore $Ha \subset aH$. Combining this with the result above, gives aH = Ha and we have that the cosets of H coincide. Therefore, H is a normal subgroup of G.

Second, suppose *H* is a normal subgroup of *G* and so left and right cosets coincide. Consider a coset product $((ah_1)H) \cdot ((bh_2)H) = (ah_1bh_2)H$. So to show that \cdot is well defined, we need to show that $(ah_1bh_2)H = (ab)H$. Now $h_1b \in Hb = bH$ (by hypothesis) and so $h_1b = bh_3$ for some $h_3 \in H$. Therefore $(ah_1)(bh_2)H \cap (ab)H \neq \emptyset$. Since the left cosets of *H* partition group *G* (Section *II*.10) then different cosets disjoint. So $(ah_1bh_2)H = (ab)H$ and $(aH) \cdot (bH) = ((ah_1)H) \cdot ((bh_2)H)$. That is, \cdot is well defined.

Corollary 14.5. Let *H* be a normal subgroup of *G*. Then the cosets of *H* form a group G/H under the binary operation $(aH) \cdot (bH) = (ab)H$.

Proof. First, $(aH) \cdot [(bH) \cdot (cH)] = (aH) \cdot ((bc)H) = (abc)H$ and $[(aH) \cdot (bH)] \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H$, and so \cdot is associative and G_1 holds.

Corollary 14.5. Let *H* be a normal subgroup of *G*. Then the cosets of *H* form a group G/H under the binary operation $(aH) \cdot (bH) = (ab)H$.

Proof. First, $(aH) \cdot [(bH) \cdot (cH)] = (aH) \cdot ((bc)H) = (abc)H$ and $[(aH) \cdot (bH)] \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H$, and so \cdot is associative and G_1 holds.

Second, for all $ah \in G/H$, $(aH) \cdot (eH) = (ae)H = aH$ and G_2 holds (it is sufficient to consider one sided identities and inverses by page 43 and Exercise 4.38).

Corollary 14.5. Let *H* be a normal subgroup of *G*. Then the cosets of *H* form a group G/H under the binary operation $(aH) \cdot (bH) = (ab)H$.

Proof. First, $(aH) \cdot [(bH) \cdot (cH)] = (aH) \cdot ((bc)H) = (abc)H$ and $[(aH) \cdot (bH)] \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H$, and so \cdot is associative and G_1 holds.

Second, for all $ah \in G/H$, $(aH) \cdot (eH) = (ae)H = aH$ and G_2 holds (it is sufficient to consider one sided identities and inverses by page 43 and Exercise 4.38).

Third, for all $aH \in G/H$, $(aH)(a^{-1}H) = (aa^{-1})H = eH = H$ and $(aH)^{-1} = (a^{-1})H$; so G_3 holds.

Corollary 14.5. Let *H* be a normal subgroup of *G*. Then the cosets of *H* form a group G/H under the binary operation $(aH) \cdot (bH) = (ab)H$.

Proof. First, $(aH) \cdot [(bH) \cdot (cH)] = (aH) \cdot ((bc)H) = (abc)H$ and $[(aH) \cdot (bH)] \cdot (cH) = ((ab)H) \cdot (cH) = (abc)H$, and so \cdot is associative and G_1 holds.

Second, for all $ah \in G/H$, $(aH) \cdot (eH) = (ae)H = aH$ and G_2 holds (it is sufficient to consider one sided identities and inverses by page 43 and Exercise 4.38).

Third, for all $aH \in G/H$, $(aH)(a^{-1}H) = (aa^{-1})H = eH = H$ and $(aH)^{-1} = (a^{-1})H$; so G_3 holds.

Theorem 14.9. Let *H* be a normal subgroup of *G*. Then $\gamma : G \to G/H$ given by $\gamma(x) = xH$ is a homomorphism with kernel *H*.

Proof. Let $x, y \in G$. Then

$$\gamma(xy) = (xy)H = (xH) \cdot (yH) = \gamma(x)\gamma(y),$$

and so γ is a homomorphism. Now xH = H if and only if $x \in H$ (recall that distinct cosets are disjoint) and so $\gamma(x) = xH = H = \gamma(e)$ if and only if $x \in H$ —that is, the kernel of γ is H.

Theorem 14.9. Let *H* be a normal subgroup of *G*. Then $\gamma : G \to G/H$ given by $\gamma(x) = xH$ is a homomorphism with kernel *H*.

Proof. Let $x, y \in G$. Then

$$\gamma(xy) = (xy)H = (xH) \cdot (yH) = \gamma(x)\gamma(y),$$

and so γ is a homomorphism. Now xH = H if and only if $x \in H$ (recall that distinct cosets are disjoint) and so $\gamma(x) = xH = H = \gamma(e)$ if and only if $x \in H$ —that is, the kernel of γ is H.

Theorem 14.11. The Fundamental Homomorphism Theorem

Theorem 14.11. The Fundamental Homomorphism Theorem.

Let $\varphi: G \to G'$ be a group homomorphism with kernel H, and let $\gamma: G \to G/H$ be the homomorphism given by $\gamma(g) = gH$ of Theorem 14.9. Then:

- $\varphi[G]$ is a group,
- **2** $\mu: G/H \to \varphi[G]$ given by $\mu(gH) = \varphi(g)$ is an isomorphism, and
- $\ \ \, { \mathfrak{S}} \ \ \, \varphi(g)=\mu(\gamma(g))=\mu\circ\gamma(g) \ \, {\rm for \ each} \ \ g\in G.$

 μ is called the *canonical* (or *natural*) *isomorphism* between G/H and $\varphi[G]$. γ is similarly the *canonical* (or *natural*) *homomorphism* between G and G/H.

Proof. $\varphi[G]$ is a group by Theorem 13.12 Part (3). μ is an isomorphism by Theorem 14.1. For $g \in G$, $\mu(\gamma(g)) = \mu(gH) = \varphi(g)$ by the definitions of μ and γ .

Theorem 14.11. The Fundamental Homomorphism Theorem

Theorem 14.11. The Fundamental Homomorphism Theorem.

Let $\varphi: G \to G'$ be a group homomorphism with kernel H, and let $\gamma: G \to G/H$ be the homomorphism given by $\gamma(g) = gH$ of Theorem 14.9. Then:

- $\varphi[G]$ is a group,
- **②** $\mu: G/H \to \varphi[G]$ given by $\mu(gH) = \varphi(g)$ is an isomorphism, and

$$\ \ \, { \mathfrak{S}} \ \ \, \varphi(g)=\mu(\gamma(g))=\mu\circ\gamma(g) \ \, {\rm for \ each} \ g\in { {G}}.$$

 μ is called the *canonical* (or *natural*) *isomorphism* between G/H and $\varphi[G]$. γ is similarly the *canonical* (or *natural*) *homomorphism* between G and G/H.

Proof. $\varphi[G]$ is a group by Theorem 13.12 Part (3). μ is an isomorphism by Theorem 14.1. For $g \in G$, $\mu(\gamma(g)) = \mu(gH) = \varphi(g)$ by the definitions of μ and γ .

Exercise 14.6. Find the order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18} / \langle (4,3) \rangle$.

Solution. Notice that $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is abelian, and so $H = \langle (4,3) \rangle$ is a normal subgroup. Now, $\mathbb{Z}_{12} \times \mathbb{Z}_{18} / \langle (4,3) \rangle$ is the group of cosets of $H = \langle (4,3) \rangle$. Since |H| = 6 and all cosets of H are the same size (Section II.10), then the number of cosets is $|\mathbb{Z}_{12} \times \mathbb{Z}_{18}|/|H| = 12 \times 18/6 = 36$. In Section II.10, the number of cosets is the index (G : H) and equals |G|/|H| when |G| is finite, so this technique works for general finite factor groups.

Exercise 14.6. Find the order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18}/\langle (4,3) \rangle$.

Solution. Notice that $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is abelian, and so $H = \langle (4,3) \rangle$ is a normal subgroup. Now, $\mathbb{Z}_{12} \times \mathbb{Z}_{18} / \langle (4,3) \rangle$ is the group of cosets of $H = \langle (4,3) \rangle$. Since |H| = 6 and all cosets of H are the same size (Section II.10), then the number of cosets is $|\mathbb{Z}_{12} \times \mathbb{Z}_{18}| / |H| = 12 \times 18/6 = 36$. In Section II.10, the number of cosets is the index (G : H) and equals |G|/|H| when |G| is finite, so this technique works for general finite factor groups.

Theorem.14.13. Let G be group and H a subgroup of G. The following are equivalent

- **1.** gH = Hg for all $g \in G$ (that is, H is normal subgroup).
- **2.** $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$

3.
$$gHg^{-1} = H$$
 for all $g \in G$.

Proof. Suppose (2) holds and *H* is a subgroup of *G* such that $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. Then $gHg^{-1} = \{ghg^{-1} \mid h \in H\} \subseteq H$ for all $g \in G$. Let $h \in H$. Then by the hypothesis of (2), $g^{-1}hg \in H$, or $g^{-1}hg = h_1$ for some $h_1 \in H$. Then $h = gh_1g^{-1}$ and $h \in gHg^{-1}$. So $H \subseteq gHg^{-1}$. Therefore $H = gHg^{-1}$ and (2) implies (3).

Theorem.14.13. Let G be group and H a subgroup of G. The following are equivalent

- **1.** gH = Hg for all $g \in G$ (that is, H is normal subgroup).
- **2.** $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$

3.
$$gHg^{-1} = H$$
 for all $g \in G$.

Proof. Suppose (2) holds and *H* is a subgroup of *G* such that $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. Then $gHg^{-1} = \{ghg^{-1} \mid h \in H\} \subseteq H$ for all $g \in G$. Let $h \in H$. Then by the hypothesis of (2), $g^{-1}hg \in H$, or $g^{-1}hg = h_1$ for some $h_1 \in H$. Then $h = gh_1g^{-1}$ and $h \in gHg^{-1}$. So $H \subseteq gHg^{-1}$. Therefore $H = gHg^{-1}$ and (2) implies (3).

Theorem 14.13 (continued).

Proof (continued). Suppose (1) holds and H is a normal subgroup of G: gH = Hg for all $g \in G$. Let $g \in G$ and $h \in G$. Then for some $h_1 \in H$ we have $gh = h_1g$ or $ghg^{-1} = h_1$ and so $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. That is, (1) implies (2).

Suppose (3) holds and $gHg^{-1} = H$, we similarly have $g^{-1}H \subseteq Hg^{-1}$ or equivalently $Hg \subseteq gH$. So gH = Hg and (3) implies (1). Hence we have the implications (1) implies (2) implies (3) implies (1), and so all statements (1), (2), (3) are equivalent, as claimed.

Theorem 14.13 (continued).

Proof (continued). Suppose (1) holds and H is a normal subgroup of G: gH = Hg for all $g \in G$. Let $g \in G$ and $h \in G$. Then for some $h_1 \in H$ we have $gh = h_1g$ or $ghg^{-1} = h_1$ and so $ghg^{-1} \in H$ for all $g \in G$ and all $h \in H$. That is, (1) implies (2).

Suppose (3) holds and $gHg^{-1} = H$, we similarly have $g^{-1}H \subseteq Hg^{-1}$ or equivalently $Hg \subseteq gH$. So gH = Hg and (3) implies (1). Hence we have the implications (1) implies (2) implies (3) implies (1), and so all statements (1), (2), (3) are equivalent, as claimed.

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_g : G \to G$ be defined by $i_g(x) = gxg^{-1}$ for $x \in G$. Then i_g is an automorphism of G.

Proof. First, we show i_g is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_g(xy) = g(xy)g^{-1} = g(xey)g^{-1} = g(x(g^{-1}g))yg^{-1} = (gxg^{-1})(gyg^{-1}) = i_g(x)i_g(y)$.

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_g : G \to G$ be defined by $i_g(x) = gxg^{-1}$ for $x \in G$. Then i_g is an automorphism of G.

Proof. First, we show i_g is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_g(xy) = g(xy)g^{-1} = g(xey)g^{-1} = g(x(g^{-1}g))yg^{-1} = (gxg^{-1})(gyg^{-1}) = i_g(x)i_g(y)$.

Next, suppose $i_g(x) = i_g(y)$. Then

$$gxg^{-1} = gyg^{-1}$$
 or $xg^{-1} = yg^{-1}$,

by left cancellation and x = y by right cancellation. So i_g is one-to-one.

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_g : G \to G$ be defined by $i_g(x) = gxg^{-1}$ for $x \in G$. Then i_g is an automorphism of G.

Proof. First, we show i_g is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_g(xy) = g(xy)g^{-1} = g(xey)g^{-1} = g(x(g^{-1}g))yg^{-1} = (gxg^{-1})(gyg^{-1}) = i_g(x)i_g(y)$.

Next, suppose $i_g(x) = i_g(y)$. Then

$$gxg^{-1} = gyg^{-1}$$
 or $xg^{-1} = yg^{-1}$,

by left cancellation and x = y by right cancellation. So i_g is one-to-one.

Finally let $y \in G$. Then $g^{-1}yg \in G$ and $i_g(g^{-1}yg) = g(g^{-1}yg)g^{-1} = y$ and so i_g is onto. Therefore i_g is an isomorphism from G to G - that is is i_g is an automorphism of G.

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_g : G \to G$ be defined by $i_g(x) = gxg^{-1}$ for $x \in G$. Then i_g is an automorphism of G.

Proof. First, we show i_g is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_g(xy) = g(xy)g^{-1} = g(xey)g^{-1} = g(x(g^{-1}g))yg^{-1} = (gxg^{-1})(gyg^{-1}) = i_g(x)i_g(y)$.

Next, suppose $i_g(x) = i_g(y)$. Then

$$gxg^{-1} = gyg^{-1}$$
 or $xg^{-1} = yg^{-1}$,

by left cancellation and x = y by right cancellation. So i_g is one-to-one.

Finally let $y \in G$. Then $g^{-1}yg \in G$ and $i_g(g^{-1}yg) = g(g^{-1}yg)g^{-1} = y$ and so i_g is onto. Therefore i_g is an isomorphism from G to G - that is is i_g is an automorphism of G.