Introduction to Modern Algebra

Part III. Homomorphisms and Factor Groups III.14. Factor Groups

Table of contents

(1) Theorem 14.1
(2) Theorem 14.4
(3) Corollary 14.5
(4) Theorem 14.9
(5) Theorem 14.11. The Fundamental Homomorphism Theorem
(6) Exercise 14.6
(7) Theorem 14.13
(8) Exercise 13.29

Theorem 14.1

Theorem 14.1. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel $H=\operatorname{Ker}(\varphi)$. Then the cosets of $H=\operatorname{Ker}(\varphi)$. Then the cosests of $H=\operatorname{Ker}(\varphi)$ from a factor group, G / H, where $(a H)(b H)=(a b) H$. Also, the map $\mu: G / H \rightarrow \varphi[G]$ defined by $\mu(a H)=\varphi(a)$ is an isomorphism. Both coset multiplication and μ are well defined (i.e., independent of the choices of a and b from the cosets).

Proof. Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism with $H=\operatorname{Ker}(\varphi)$. By Theorem 13.15, for any $a \in G$ we know that $a H=H a$ so when we speak of "the cosets" of H, we can consider only the left cosets of H. Denote the set of all cosets of H as G / H. We now show that $\varphi: G / H \rightarrow \varphi[G]$ is a one-to-one mapping.

Theorem 14.1

Theorem 14.1. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel $H=\operatorname{Ker}(\varphi)$. Then the cosets of $H=\operatorname{Ker}(\varphi)$. Then the cosests of $H=\operatorname{Ker}(\varphi)$ from a factor group, G / H, where $(a H)(b H)=(a b) H$. Also, the map $\mu: G / H \rightarrow \varphi[G]$ defined by $\mu(a H)=\varphi(a)$ is an isomorphism. Both coset multiplication and μ are well defined (i.e., independent of the choices of a and b from the cosets).

Proof. Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism with $H=\operatorname{Ker}(\varphi)$. By Theorem 13.15, for any $a \in G$ we know that $a H=H a$ so when we speak of "the cosets" of H, we can consider only the left cosets of H. Denote the set of all cosets of H as G / H. We now show that $\varphi: G / H \rightarrow \varphi[G]$ is a one-to-one mapping. Let $\varphi(a), \varphi(b) \in \varphi[G], \varphi(a) \neq \varphi(b)$. Then by Theorem 13.15, $\varphi^{-1}[\{\varphi(a)\}]=\{x \in G \mid \varphi(x)=\varphi(a)\}=a H$. Since $\varphi(a) \neq \varphi(b)$ then $a H$ and $b H$ are disjoint. That is, $a H \neq b H$. So $\varphi: G / H \rightarrow \varphi[G]$ is one-to-one, as claimed.

Theorem 14.1

Theorem 14.1. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel $H=\operatorname{Ker}(\varphi)$. Then the cosets of $H=\operatorname{Ker}(\varphi)$. Then the cosests of $H=\operatorname{Ker}(\varphi)$ from a factor group, G / H, where $(a H)(b H)=(a b) H$. Also, the map $\mu: G / H \rightarrow \varphi[G]$ defined by $\mu(a H)=\varphi(a)$ is an isomorphism. Both coset multiplication and μ are well defined (i.e., independent of the choices of a and b from the cosets).

Proof. Let $\varphi: G \rightarrow G^{\prime}$ be a homomorphism with $H=\operatorname{Ker}(\varphi)$. By Theorem 13.15, for any $a \in G$ we know that $a H=H a$ so when we speak of "the cosets" of H, we can consider only the left cosets of H. Denote the set of all cosets of H as G / H. We now show that $\varphi: G / H \rightarrow \varphi[G]$ is a one-to-one mapping. Let $\varphi(a), \varphi(b) \in \varphi[G], \varphi(a) \neq \varphi(b)$. Then by Theorem 13.15, $\varphi^{-1}[\{\varphi(a)\}]=\{x \in G \mid \varphi(x)=\varphi(a)\}=a H$. Since $\varphi(a) \neq \varphi(b)$ then $a H$ and $b H$ are disjoint. That is, $a H \neq b H$. So $\varphi: G / H \rightarrow \varphi[G]$ is one-to-one, as claimed.

Theorem 14.1 (continued 1)

Proof (continued). We claim $\varphi: G / H \rightarrow \varphi[G]$ is onto. Let $\varphi(g) \circ \varphi[G]$ for some $g \in G$. Then $\varphi(g H)=g$ for coset $g h H \in G / H$ and φ is onto, as claimed.

Next, we define a binary operation on G / H as: For $a H, b H \in G / H$, define $(a H) \cdot(b H)=(a H)(b H)=(a b) H$. First, we show that \cdot is well-defined (that is, it is independent of the choice of $a, b \in G$). Let $a_{1} \in a H$ and $b_{1} \in b H$. Then $a_{1}=a h_{1}$ and $b_{1}=b h_{2}$ for some $h_{1}, h_{2} \in H$. There exists $h_{3} \in H$ such that $h_{1} b=b h_{3}$ since $a H=H a$ by Theorem 13.15 (this is where the fact that the cosets coincide is used-in insuring that the binary operation on G/H is well defined).

Theorem 14.1 (continued 1)

Proof (continued). We claim $\varphi: G / H \rightarrow \varphi[G]$ is onto. Let $\varphi(g) \circ \varphi[G]$ for some $g \in G$. Then $\varphi(g H)=g$ for coset $g h H \in G / H$ and φ is onto, as claimed.

Next, we define a binary operation on G / H as: For $a H, b H \in G / H$, define $(a H) \cdot(b H)=(a H)(b H)=(a b) H$. First, we show that \cdot is well-defined (that is, it is independent of the choice of $a, b \in G$). Let $a_{1} \in a H$ and $b_{1} \in b H$. Then $a_{1}=a h_{1}$ and $b_{1}=b h_{2}$ for some $h_{1}, h_{2} \in H$. There exists $h_{3} \in H$ such that $h_{1} b=b h_{3}$ since $a H=H a$ by Theorem 13.15 (this is where the fact that the cosets coincide is used-in insuring that the binary operation on G / H is well defined). Hence

$$
a_{1} b_{1}=\left(a h_{1}\right)\left(b h_{2}\right)=a\left(h_{1} b\right) h_{2}=a\left(b h_{3}\right) h_{2}=(a b)\left(h_{3} h_{2}\right) \in(a b) H .
$$

So $\left(a_{1} b_{1}\right) H \subset(a b) H$ and similarly $(a b) H \subset\left(a_{1} b_{1}\right) H$. That is, $(a b) H=\left(a_{1} b_{1}\right) H$ and \cdot is well defined, as claimed.

Theorem 14.1 (continued 1)

Proof (continued). We claim $\varphi: G / H \rightarrow \varphi[G]$ is onto. Let $\varphi(g) \circ \varphi[G]$ for some $g \in G$. Then $\varphi(g H)=g$ for coset $g h H \in G / H$ and φ is onto, as claimed.

Next, we define a binary operation on G / H as: For $a H, b H \in G / H$, define $(a H) \cdot(b H)=(a H)(b H)=(a b) H$. First, we show that \cdot is well-defined (that is, it is independent of the choice of $a, b \in G$). Let $a_{1} \in a H$ and $b_{1} \in b H$. Then $a_{1}=a h_{1}$ and $b_{1}=b h_{2}$ for some $h_{1}, h_{2} \in H$. There exists $h_{3} \in H$ such that $h_{1} b=b h_{3}$ since $a H=H a$ by Theorem 13.15 (this is where the fact that the cosets coincide is used-in insuring that the binary operation on G / H is well defined). Hence

$$
a_{1} b_{1}=\left(a h_{1}\right)\left(b h_{2}\right)=a\left(h_{1} b\right) h_{2}=a\left(b h_{3}\right) h_{2}=(a b)\left(h_{3} h_{2}\right) \in(a b) H .
$$

So $\left(a_{1} b_{1}\right) H \subset(a b) H$ and similarly $(a b) H \subset\left(a_{1} b_{1}\right) H$. That is, $(a b) H=\left(a_{1} b_{1}\right) H$ and \cdot is well defined, as claimed.

Theorem 14.1 (continued 2)

Proof (continued). We claim that since G is a group, the $\langle G / H, \cdot\rangle$ is a group. First, $((a H) \cdot(b H)) \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H=$ $(a H) \cdot((b c) H)=(a H)(b H \cdot c H)$ and so \cdot is associative and G_{1} holds. Second, for all $a \in G,(e H) \cdot(a H)=(e a) H=a H$, so $e H=H$ is the identity of G / H and G_{2} holds. Third, for all $a \in G$ we have $(a H) \cdot\left(a^{-1} H\right)=\left(a a^{-1}\right) H=e H=H$ and G_{3} holds. So $\langle G / H, \cdot\rangle$ is a group, as claimed.
Finally, we show that $\mu: G / H \rightarrow \varphi[G]$ defined as $\mu(a H)=\varphi(a)$ is an isomorphism. First, we must show that μ is well-defined (that is, independent of the choice of $a \in a H$). Let $a_{1} \in a H$. Then by Theorem 13.15, $a H=\varphi^{-1}[\{\varphi(a)\}]=\{x \in G \mid \varphi(x)=\varphi(a)\}=\{x \in G \mid \varphi(x)=$ $\left.\varphi\left(a_{1}\right)\right\}=a_{1} H$.

Theorem 14.1 (continued 2)

Proof (continued). We claim that since G is a group, the $\langle G / H, \cdot\rangle$ is a group. First, $((a H) \cdot(b H)) \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H=$ $(a H) \cdot((b c) H)=(a H)(b H \cdot c H)$ and so \cdot is associative and G_{1} holds. Second, for all $a \in G,(e H) \cdot(a H)=(e a) H=a H$, so $e H=H$ is the identity of G / H and G_{2} holds. Third, for all $a \in G$ we have $(a H) \cdot\left(a^{-1} H\right)=\left(a a^{-1}\right) H=e H=H$ and $G 3$ holds. So $\langle G / H, \cdot\rangle$ is a group, as claimed.
Finally, we show that $\mu: G / H \rightarrow \varphi[G]$ defined as $\mu(a H)=\varphi(a)$ is an isomorphism. First, we must show that μ is well-defined (that is, independent of the choice of $a \in a H$). Let $a_{1} \in a H$. Then by Theorem 13.15, $a H=\varphi^{-1}[\{\varphi(a)\}]=\{x \in G \mid \varphi(x)=\varphi(a)\}=\{x \in G \mid \varphi(x)=$ $\left.\varphi\left(a_{1}\right)\right\}=a_{1} H$. Therefore $\mu(a H)=\varphi(a)=\varphi\left(a_{1}\right)=\mu\left(a_{1} H\right)$ and μ is well defined. Notice next that $\mu(a H)=\varphi[a H]$ as defined above. Since $\varphi: G / H \rightarrow \varphi[G]$ is one-to-one and onto as shown above, then $\mu: G / H \rightarrow \varphi[G]$ is one-to-one and onto. That is, μ is an isomorphism and G / H is isomorphic to $\varphi[G]$, as claimed.

Theorem 14.1 (continued 2)

Proof (continued). We claim that since G is a group, the $\langle G / H, \cdot\rangle$ is a group. First, $((a H) \cdot(b H)) \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H=$ $(a H) \cdot((b c) H)=(a H)(b H \cdot c H)$ and so \cdot is associative and G_{1} holds. Second, for all $a \in G,(e H) \cdot(a H)=(e a) H=a H$, so $e H=H$ is the identity of G / H and G_{2} holds. Third, for all $a \in G$ we have $(a H) \cdot\left(a^{-1} H\right)=\left(a a^{-1}\right) H=e H=H$ and G_{3} holds. So $\langle G / H, \cdot\rangle$ is a group, as claimed.
Finally, we show that $\mu: G / H \rightarrow \varphi[G]$ defined as $\mu(a H)=\varphi(a)$ is an isomorphism. First, we must show that μ is well-defined (that is, independent of the choice of $a \in a H$). Let $a_{1} \in a H$. Then by Theorem 13.15, $a H=\varphi^{-1}[\{\varphi(a)\}]=\{x \in G \mid \varphi(x)=\varphi(a)\}=\{x \in G \mid \varphi(x)=$ $\left.\varphi\left(a_{1}\right)\right\}=a_{1} H$. Therefore $\mu(a H)=\varphi(a)=\varphi\left(a_{1}\right)=\mu\left(a_{1} H\right)$ and μ is well defined. Notice next that $\mu(a H)=\varphi[a H]$ as defined above. Since $\varphi: G / H \rightarrow \varphi[G]$ is one-to-one and onto as shown above, then $\mu: G / H \rightarrow \varphi[G]$ is one-to-one and onto. That is, μ is an isomorphism and G / H is isomorphic to $\varphi[G]$, as claimed.

Theorem 14.4

Theorem 14.4. Let H be a subgroup of a group G. Then left coset multiplication is well-defined by the equation $(a H) \cdot(b H)=(a b) H$ if and only if H is a normal subgroup of G.

Proof. First, assume $(a H) \cdot(b H)=(a b) H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show $a H=H a$ (and so H is a normal subgroup of G). Let $x \in a H$. We have $a^{-1} \in a^{-1} H$ and so $(x H) \cdot\left(a^{-1} H\right)=\left(x a^{-1} H\right)$. Also, $a \in a H$ and so $(a H) \cdot\left(a^{1} H\right)=\left(a a^{1}\right)=e H=H$.

Theorem 14.4

Theorem 14.4. Let H be a subgroup of a group G. Then left coset multiplication is well-defined by the equation $(a H) \cdot(b H)=(a b) H$ if and only if H is a normal subgroup of G.

Proof. First, assume $(a H) \cdot(b H)=(a b) H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show $a H=H a$ (and so H is a normal subgroup of G). Let $x \in a H$. We have $a^{-1} \in a^{-1} H$ and so $(x H) \cdot\left(a^{-1} H\right)=\left(x a^{-1} H\right)$. Also, $a \in a H$ and so $(a H) \cdot\left(a^{1} H\right)=\left(a a^{1}\right)=e H=H$. If . is well defined then we must have $(x H) \cdot\left(a^{-1} H\right)=(a H) \cdot\left(a^{-1} H\right)$ (since both x and a can be used as representatives of coset $a H$), that $\left(x a^{-1}\right) H=e H=H$ and so $x a^{-1}=h \in H$. Then $x=h a$ and $x \in H a$. Therefore $a H \subset H a$.

Theorem 14.4

Theorem 14.4. Let H be a subgroup of a group G. Then left coset multiplication is well-defined by the equation $(a H) \cdot(b H)=(a b) H$ if and only if H is a normal subgroup of G.

Proof. First, assume $(a H) \cdot(b H)=(a b) H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show $a H=H a$ (and so H is a normal subgroup of G). Let $x \in a H$. We have $a^{-1} \in a^{-1} H$ and so $(x H) \cdot\left(a^{-1} H\right)=\left(x a^{-1} H\right)$. Also, $a \in a H$ and so $(a H) \cdot\left(a^{1} H\right)=\left(a a^{1}\right)=e H=H$. If . is well defined then we must have $(x H) \cdot\left(a^{-1} H\right)=(a H) \cdot\left(a^{-1} H\right)$ (since both x and a can be used as representatives of coset $a H$), that $\left(x a^{-1}\right) H=e H=H$ and so $x a^{-1}=h \in H$. Then $x=h a$ and $x \in H a$. Therefore $a H \subset H a$. Next, let $y \in H a$ (this part is Exercise 14.25). Then $y=h a$ for some $h \in H$. In this left coset product $\left(a^{-1} H\right) \cdot(a H)$, choose $a^{-1} h \in a^{-1} H$ and $a \in a H$ for the representatives to get $\left(a^{-1} h H\right) \cdot(a H)=\left(a^{-1} h a\right) H$ and since $\left(a^{-1} H\right) \cdot(a H)=\left(a^{-1} a\right) H=e H=H(\cdot$ is well defined $)$, it must be that $a^{-1} h a=h^{\prime}$ for some $h^{\prime} \in H$.

Theorem 14.4

Theorem 14.4. Let H be a subgroup of a group G. Then left coset multiplication is well-defined by the equation $(a H) \cdot(b H)=(a b) H$ if and only if H is a normal subgroup of G.
Proof. First, assume $(a H) \cdot(b H)=(a b) H$ is a well-defined binary operation on left cosets. Let $a \in G$. We now show $a H=H a$ (and so H is a normal subgroup of G). Let $x \in a H$. We have $a^{-1} \in a^{-1} H$ and so $(x H) \cdot\left(a^{-1} H\right)=\left(x a^{-1} H\right)$. Also, $a \in a H$ and so $(a H) \cdot\left(a^{1} H\right)=\left(a a^{1}\right)=e H=H$. If \cdot is well defined then we must have $(x H) \cdot\left(a^{-1} H\right)=(a H) \cdot\left(a^{-1} H\right)$ (since both x and a can be used as representatives of coset $a H$), that $\left(x a^{-1}\right) H=e H=H$ and so $x a^{-1}=h \in H$. Then $x=h a$ and $x \in H a$. Therefore $a H \subset H a$. Next, let $y \in H a$ (this part is Exercise 14.25). Then $y=h a$ for some $h \in H$. In this left coset product $\left(a^{-1} H\right) \cdot(a H)$, choose $a^{-1} h \in a^{-1} H$ and $a \in a H$ for the representatives to get $\left(a^{-1} h H\right) \cdot(a H)=\left(a^{-1} h a\right) H$ and since $\left(a^{-1} H\right) \cdot(a H)=\left(a^{-1} a\right) H=e H=H(\cdot$ is well defined $)$, it must be that $a^{-1} h a=h^{\prime}$ for some $h^{\prime} \in H$.

Theorem 14.4 (continued)

Proof (continued). Then, $h a=a h^{\prime}$ for some $h^{\prime} \in H$. That is, $y=h a \in a H$. Therefore $H a \subset a H$. Combining this with the result above, gives $a H=H a$ and we have that the cosets of H coincide. Therefore, H is a normal subgroup of G.

Second, suppose H is a normal subgroup of G and so left and right cosets coincide. Consider a coset product $\left(\left(a h_{1}\right) H\right) \cdot\left(\left(b h_{2}\right) H\right)=\left(a h_{1} b h_{2}\right) H$. So to show that \cdot is well defined, we need to show that $\left(a h_{1} b h_{2}\right) H=(a b) H$.

Theorem 14.4 (continued)

Proof (continued). Then, $h a=a h^{\prime}$ for some $h^{\prime} \in H$. That is, $y=h a \in a H$. Therefore $H a \subset a H$. Combining this with the result above, gives $a H=H a$ and we have that the cosets of H coincide. Therefore, H is a normal subgroup of G.

Second, suppose H is a normal subgroup of G and so left and right cosets coincide. Consider a coset product $\left(\left(a h_{1}\right) H\right) \cdot\left(\left(b h_{2}\right) H\right)=\left(a h_{1} b h_{2}\right) H$. So to show that . is well defined, we need to show that $\left(a h_{1} b h_{2}\right) H=(a b) H$. Now $h_{1} b \in H b=b H$ (by hypothesis) and so $h_{1} b=b h_{3}$ for some $h_{3} \in H$. Therefore $\left(a h_{1}\right)\left(b h_{2}\right) H \cap(a b) H \neq \emptyset$. Since the left cosets of H partition group G (Section II.10) then different cosets disjoint. So $\left(a h_{1} b h_{2}\right) H=(a b) H$ and $(a H) \cdot(b H)=\left(\left(a h_{1}\right) H\right) \cdot\left(\left(b h_{2}\right) H\right)$. That is, \cdot is well defined.

Theorem 14.4 (continued)

Proof (continued). Then, $h a=a h^{\prime}$ for some $h^{\prime} \in H$. That is, $y=h a \in a H$. Therefore $H a \subset a H$. Combining this with the result above, gives $a H=H a$ and we have that the cosets of H coincide. Therefore, H is a normal subgroup of G.

Second, suppose H is a normal subgroup of G and so left and right cosets coincide. Consider a coset product $\left(\left(a h_{1}\right) H\right) \cdot\left(\left(b h_{2}\right) H\right)=\left(a h_{1} b h_{2}\right) H$. So to show that . is well defined, we need to show that $\left(a h_{1} b h_{2}\right) H=(a b) H$. Now $h_{1} b \in H b=b H$ (by hypothesis) and so $h_{1} b=b h_{3}$ for some $h_{3} \in H$. Therefore $\left(a h_{1}\right)\left(b h_{2}\right) H \cap(a b) H \neq \emptyset$. Since the left cosets of H partition group G (Section II.10) then different cosets disjoint. So $\left(a h_{1} b h_{2}\right) H=(a b) H$ and $(a H) \cdot(b H)=\left(\left(a h_{1}\right) H\right) \cdot\left(\left(b h_{2}\right) H\right)$. That is, \cdot is well defined.

Corollary 14.5

Corollary 14.5. Let H be a normal subgroup of G. Then the cosets of H form a group G / H under the binary operation $(a H) \cdot(b H)=(a b) H$.

Proof. First, $(a H) \cdot[(b H) \cdot(c H)]=(a H) \cdot((b c) H)=(a b c) H$ and $[(a H) \cdot(b H)] \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H$, and so \cdot is associative and G_{1} holds.

Corollary 14.5

Corollary 14.5. Let H be a normal subgroup of G. Then the cosets of H form a group G / H under the binary operation $(a H) \cdot(b H)=(a b) H$.

Proof. First, $(a H) \cdot[(b H) \cdot(c H)]=(a H) \cdot((b c) H)=(a b c) H$ and $[(a H) \cdot(b H)] \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H$, and so \cdot is associative and G_{1} holds.

Second, for all $a h \in G / H,(a H) \cdot(e H)=(a e) H=a H$ and G_{2} holds (it is sufficient to consider one sided identities and inverses by page 43 and Exercise 4.38).

Corollary 14.5

Corollary 14.5. Let H be a normal subgroup of G. Then the cosets of H form a group G / H under the binary operation $(a H) \cdot(b H)=(a b) H$.

Proof. First, $(a H) \cdot[(b H) \cdot(c H)]=(a H) \cdot((b c) H)=(a b c) H$ and $[(a H) \cdot(b H)] \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H$, and so \cdot is associative and G_{1} holds.

Second, for all $a h \in G / H,(a H) \cdot(e H)=(a e) H=a H$ and G_{2} holds (it is sufficient to consider one sided identities and inverses by page 43 and Exercise 4.38).

Third, for all $a H \in G / H,(a H)\left(a^{-1} H\right)=\left(a a^{-1}\right) H=e H=H$ and $(a H)^{-1}=\left(a^{-1}\right) H$; so G_{3} holds.

Corollary 14.5

Corollary 14.5. Let H be a normal subgroup of G. Then the cosets of H form a group G / H under the binary operation $(a H) \cdot(b H)=(a b) H$.

Proof. First, $(a H) \cdot[(b H) \cdot(c H)]=(a H) \cdot((b c) H)=(a b c) H$ and $[(a H) \cdot(b H)] \cdot(c H)=((a b) H) \cdot(c H)=(a b c) H$, and so \cdot is associative and G_{1} holds.

Second, for all $a h \in G / H,(a H) \cdot(e H)=(a e) H=a H$ and G_{2} holds (it is sufficient to consider one sided identities and inverses by page 43 and Exercise 4.38).

Third, for all $a H \in G / H,(a H)\left(a^{-1} H\right)=\left(a a^{-1}\right) H=e H=H$ and $(a H)^{-1}=\left(a^{-1}\right) H$; so G_{3} holds.

Theorem 14.9

Theorem 14.9. Let H be a normal subgroup of G. Then $\gamma: G \rightarrow G / H$ given by $\gamma(x)=x H$ is a homomorphism with kernel H.

Proof. Let $x, y \in G$. Then

$$
\gamma(x y)=(x y) H=(x H) \cdot(y H)=\gamma(x) \gamma(y)
$$

and so γ is a homomorphism. Now $x H=H$ if and only if $x \in H$ (recall that distinct cosets are disjoint) and so $\gamma(x)=x H=H=\gamma(e)$ if and only if $x \in H$-that is, the kernel of γ is H.

Theorem 14.9

Theorem 14.9. Let H be a normal subgroup of G. Then $\gamma: G \rightarrow G / H$ given by $\gamma(x)=x H$ is a homomorphism with kernel H.

Proof. Let $x, y \in G$. Then

$$
\gamma(x y)=(x y) H=(x H) \cdot(y H)=\gamma(x) \gamma(y)
$$

and so γ is a homomorphism. Now $x H=H$ if and only if $x \in H$ (recall that distinct cosets are disjoint) and so $\gamma(x)=x H=H=\gamma(e)$ if and only if $x \in H$-that is, the kernel of γ is H.

Theorem 14.11. The Fundamental Homomorphism Theorem

Theorem 14.11. The Fundamental Homomorphism Theorem.

 Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel H, and let $\gamma: G \rightarrow G / H$ be the homomorphism given by $\gamma(g)=g H$ of Theorem 14.9. Then:(1) $\varphi[G]$ is a group,
(2) $\mu: G / H \rightarrow \varphi[G]$ given by $\mu(g H)=\varphi(g)$ is an isomorphism, and
(3) $\varphi(g)=\mu(\gamma(g))=\mu \circ \gamma(g)$ for each $g \in G$.
μ is called the canonical (or natural) isomorphism between G / H and $\varphi[G]$. γ is similarly the canonical (or natural) homomorphism between G and G/H.

Proof. $\varphi[G]$ is a group by Theorem 13.12 Part (3). μ is an isomorphism by Theorem 14.1. For $g \in G, \mu(\gamma(g))=\mu(g H)=\varphi(g)$ by the definitions of μ and γ

Theorem 14.11. The Fundamental Homomorphism Theorem

Theorem 14.11. The Fundamental Homomorphism Theorem.

 Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism with kernel H, and let $\gamma: G \rightarrow G / H$ be the homomorphism given by $\gamma(g)=g H$ of Theorem 14.9. Then:(1) $\varphi[G]$ is a group,
(2) $\mu: G / H \rightarrow \varphi[G]$ given by $\mu(g H)=\varphi(g)$ is an isomorphism, and
(3) $\varphi(g)=\mu(\gamma(g))=\mu \circ \gamma(g)$ for each $g \in G$.
μ is called the canonical (or natural) isomorphism between G / H and $\varphi[G]$. γ is similarly the canonical (or natural) homomorphism between G and G/H.

Proof. $\varphi[G]$ is a group by Theorem 13.12 Part (3). μ is an isomorphism by Theorem 14.1. For $g \in G, \mu(\gamma(g))=\mu(g H)=\varphi(g)$ by the definitions of μ and γ.

Exercise 14.6

Exercise 14.6. Find the order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18} /\langle(4,3)\rangle$.

Solution. Notice that $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is abelian, and so $H=\langle(4,3)\rangle$ is a normal subgroup. Now, $\mathbb{Z}_{12} \times \mathbb{Z}_{18} /\langle(4,3)\rangle$ is the group of cosets of $H=\langle(4,3)\rangle$. Since $|H|=6$ and all cosets of H are the same size (Section II.10), then the number of cosets is $\left|\mathbb{Z}_{12} \times \mathbb{Z}_{18}\right| /|H|=12 \times 18 / 6=36$. In Section II.10, the number of cosets is the index $(G: H)$ and equals $|G| /|H|$ when $G \mid$ is finite, so this technique works for general finite factor groups.

Exercise 14.6

Exercise 14.6. Find the order of $\mathbb{Z}_{12} \times \mathbb{Z}_{18} /\langle(4,3)\rangle$.

Solution. Notice that $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$ is abelian, and so $H=\langle(4,3)\rangle$ is a normal subgroup. Now, $\mathbb{Z}_{12} \times \mathbb{Z}_{18} /\langle(4,3)\rangle$ is the group of cosets of $H=\langle(4,3)\rangle$. Since $|H|=6$ and all cosets of H are the same size (Section II.10), then the number of cosets is $\left|\mathbb{Z}_{12} \times \mathbb{Z}_{18}\right| /|H|=12 \times 18 / 6=36$. In Section II.10, the number of cosets is the index $(G: H)$ and equals $|G| /|H|$ when $|G|$ is finite, so this technique works for general finite factor groups.

Theorem 14.13

Theorem.14.13. Let G be group and H a subgroup of G. The following are equivalent

1. $g H=H g$ for all $g \in G$ (that is, H is normal subgroup).
2. ghg $^{-1} \in H$ for all $g \in G$ and $h \in H$
3. $g \mathrm{Hg}^{-1}=H$ for all $g \in G$.

Proof. Suppose (2) holds and H is a subgroup of G such that $\mathrm{ghg}^{-1} \in H$ for all $g \in G$ and all $h \in H$. Then $g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} \subseteq H$ for all $g \in G$. Let $h \in H$. Then by the hypothesis of (2), $g^{-1} h g \in H$, or $g^{-1} h g=h_{1}$ for some $h_{1} \in H$. Then $h=g h_{1} g^{-1}$ and $h \in g \mathrm{Hg}^{-1}$. So $H \subseteq g \mathrm{Hg}^{-1}$. Therefore $H=g \mathrm{Hg}^{-1}$ and (2) implies (3).

Theorem 14.13

Theorem.14.13. Let G be group and H a subgroup of G. The following are equivalent

1. $g H=H g$ for all $g \in G$ (that is, H is normal subgroup).
2. ghg $^{-1} \in H$ for all $g \in G$ and $h \in H$
3. $g \mathrm{Hg}^{-1}=H$ for all $g \in G$.

Proof. Suppose (2) holds and H is a subgroup of G such that $\mathrm{ghg}^{-1} \in H$ for all $g \in G$ and all $h \in H$. Then $g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\} \subseteq H$ for all $g \in G$. Let $h \in H$. Then by the hypothesis of (2), $g^{-1} h g \in H$, or $g^{-1} h g=h_{1}$ for some $h_{1} \in H$. Then $h=g h_{1} g^{-1}$ and $h \in g H^{-1}$. So $H \subseteq g \mathrm{Hg}^{-1}$. Therefore $H=g \mathrm{Hg}^{-1}$ and (2) implies (3).

Theorem 14.13 (continued).

Proof (continued). Suppose (1) holds and H is a normal subgroup of $G: g H=H g$ for all $g \in G$. Let $g \in G$ and $h \in G$. Then for some $h_{1} \in H$ we have $g h=h_{1} g$ or $g h g^{-1}=h_{1}$ and so $g h g^{-1} \in H$ for all $g \in G$ and all $h \in H$. That is, (1) implies (2).

Suppose (3) holds and $g \mathrm{Hg}^{-1}=\mathrm{H}$, we similarly have $\mathrm{g}^{-1} \mathrm{H} \subseteq \mathrm{Hg}^{-1}$ or equivalently $\mathrm{Hg} \subseteq g H$. So $g H=H g$ and (3) implies (1). Hence we have the implications (1) implies (2) implies (3) implies (1), and so all statements (1), (2), (3) are equivalent, as claimed.

Theorem 14.13 (continued).

Proof (continued). Suppose (1) holds and H is a normal subgroup of $G: g H=H g$ for all $g \in G$. Let $g \in G$ and $h \in G$. Then for some $h_{1} \in H$ we have $g h=h_{1} g$ or $g h g^{-1}=h_{1}$ and so $g h g^{-1} \in H$ for all $g \in G$ and all $h \in H$. That is, (1) implies (2).

Suppose (3) holds and $g \mathrm{Hg}^{-1}=\mathrm{H}$, we similarly have $g^{-1} \mathrm{H} \subseteq \mathrm{Hg}^{-1}$ or equivalently $H g \subseteq g H$. So $g H=H g$ and (3) implies (1). Hence we have the implications (1) implies (2) implies (3) implies (1), and so all statements (1), (2), (3) are equivalent, as claimed.

Exercise 13.29

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_{g}: G \rightarrow G$ be defined by $i_{g}(x)=g \times g^{-1}$ for $x \in G$. Then i_{g} is an automorphism of G.

Proof. First, we show i_{g} is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_{g}(x y)=g(x y) g^{-1}=g(x e y) g^{-1}=g\left(x\left(g^{-1} g\right)\right) y g^{-1}=$ $\left(g x g^{-1}\right)\left(g y g^{-1}\right)=i_{g}(x) i_{g}(y)$.

Exercise 13.29

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_{g}: G \rightarrow G$ be defined by $i_{g}(x)=g \times g^{-1}$ for $x \in G$. Then i_{g} is an automorphism of G.

Proof. First, we show i_{g} is a homomorphism for all $g \in G$. Let $x, y \in G$.
Then $i_{g}(x y)=g(x y) g^{-1}=g(x e y) g^{-1}=g\left(x\left(g^{-1} g\right)\right) y g^{-1}=$ $\left(g x g^{-1}\right)\left(g y g^{-1}\right)=i_{g}(x) i_{g}(y)$.

Next, suppose $i_{g}(x)=i_{g}(y)$. Then

by left cancellation and $x=y$ by right cancellation. So i_{g} is one-to-one.

Exercise 13.29

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_{g}: G \rightarrow G$ be defined by $i_{g}(x)=g^{\prime} g^{-1}$ for $x \in G$. Then i_{g} is an automorphism of G.

Proof. First, we show i_{g} is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_{g}(x y)=g(x y) g^{-1}=g(x e y) g^{-1}=g\left(x\left(g^{-1} g\right)\right) y g^{-1}=$ $\left(g x g^{-1}\right)\left(g y g^{-1}\right)=i_{g}(x) i_{g}(y)$.

Next, suppose $i_{g}(x)=i_{g}(y)$. Then

$$
g x g^{-1}=g y g^{-1} \text { or } x g^{-1}=y g^{-1}
$$

by left cancellation and $x=y$ by right cancellation. So i_{g} is one-to-one.
Finally let $y \in G$. Then $g^{-1} y g \in G$ and $i_{g}\left(g^{-1} y g\right)=g\left(g^{-1} y g\right) g^{-1}=y$ and so i_{g} is onto. Therefore i_{g} is an isomorphism from G to G - that is is i_{g} is an automorphism of G.

Exercise 13.29

Exercise 13.29. Let G be a group and let $g \in G$. Let $i_{g}: G \rightarrow G$ be defined by $i_{g}(x)=g^{\prime} g^{-1}$ for $x \in G$. Then i_{g} is an automorphism of G.

Proof. First, we show i_{g} is a homomorphism for all $g \in G$. Let $x, y \in G$. Then $i_{g}(x y)=g(x y) g^{-1}=g(x e y) g^{-1}=g\left(x\left(g^{-1} g\right)\right) y g^{-1}=$ $\left(g x g^{-1}\right)\left(g y g^{-1}\right)=i_{g}(x) i_{g}(y)$.

Next, suppose $i_{g}(x)=i_{g}(y)$. Then

$$
g x g^{-1}=g y g^{-1} \text { or } x g^{-1}=y g^{-1}
$$

by left cancellation and $x=y$ by right cancellation. So i_{g} is one-to-one.
Finally let $y \in G$. Then $g^{-1} y g \in G$ and $i_{g}\left(g^{-1} y g\right)=g\left(g^{-1} y g\right) g^{-1}=y$ and so i_{g} is onto. Therefore i_{g} is an isomorphism from G to G - that is is i_{g} is an automorphism of G.

