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Theorem 14.1

Theorem 14.1

Theorem 14.1. Let ϕ : G → G ′ be a group homomorphism with kernel
H = Ker(ϕ). Then the cosets of H = Ker(ϕ). Then the cosests of
H = Ker(ϕ) from a factor group, G/H, where (aH)(bH) = (ab)H. Also,
the map µ : G/H → ϕ[G ] defined by µ(aH) = ϕ(a) is an isomorphism.
Both coset multiplication and µ are well defined (i.e., independent of the
choices of a and b from the cosets).

Proof. Let ϕ : G → G ′ be a homomorphism with H = Ker(ϕ). By
Theorem 13.15, for any a ∈ G we know that aH = Ha so when we speak
of “the cosets” of H, we can consider only the left cosets of H. Denote
the set of all cosets of H as G/H. We now show that ϕ : G/H → ϕ[G ] is
a one-to-one mapping.

Let ϕ(a), ϕ(b) ∈ ϕ[G ], ϕ(a) 6= ϕ(b). Then by
Theorem 13.15, ϕ−1[{ϕ(a)}] = {x ∈ G | ϕ(x) = ϕ(a)} = aH. Since
ϕ(a) 6= ϕ(b) then aH and bH are disjoint. That is, aH 6= bH. So
ϕ : G/H → ϕ[G ] is one-to-one, as claimed.
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Theorem 14.1

Theorem 14.1 (continued 1)

Proof (continued). We claim ϕ : G/H → ϕ[G ] is onto. Let ϕ(g) ◦ ϕ[G ]
for some g ∈ G . Then ϕ(gH) = g for coset ghH ∈ G/H and ϕ is onto, as
claimed.

Next, we define a binary operation on G/H as: For aH, bH ∈ G/H, define
(aH) · (bH) = (aH)(bH) = (ab)H. First, we show that · is well-defined
(that is, it is independent of the choice of a, b ∈ G ). Let a1 ∈ aH and
b1 ∈ bH. Then a1 = ah1 and b1 = bh2 for some h1, h2 ∈ H. There exists
h3 ∈ H such that h1b = bh3 since aH = Ha by Theorem 13.15 (this is
where the fact that the cosets coincide is used—in insuring that the binary
operation on G/H is well defined).

Hence

a1b1 = (ah1)(bh2) = a(h1b)h2 = a(bh3)h2 = (ab)(h3h2) ∈ (ab)H.

So (a1b1)H ⊂ (ab)H and similarly (ab)H ⊂ (a1b1)H. That is,
(ab)H = (a1b1)H and · is well defined, as claimed.
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Theorem 14.1

Theorem 14.1 (continued 2)

Proof (continued). We claim that since G is a group, the 〈G/H, ·〉 is a
group. First, ((aH) · (bH)) · (cH) = ((ab)H) · (cH) = (abc)H =
(aH) · ((bc)H) = (aH)(bH · cH) and so · is associative and G1 holds.
Second, for all a ∈ G , (eH) · (aH) = (ea)H = aH, so eH = H is the
identity of G/H and G2 holds. Third, for all a ∈ G we have
(aH) · (a−1H) = (aa−1)H = eH = H and G3 holds. So 〈G/H, ·〉 is a
group, as claimed.

Finally, we show that µ : G/H → ϕ[G ] defined as µ(aH) = ϕ(a) is an
isomorphism. First, we must show that µ is well-defined (that is,
independent of the choice of a ∈ aH). Let a1 ∈ aH. Then by Theorem
13.15, aH = ϕ−1[{ϕ(a)}] = {x ∈ G | ϕ(x) = ϕ(a)} = {x ∈ G | ϕ(x) =
ϕ(a1)} = a1H.

Therefore µ(aH) = ϕ(a) = ϕ(a1) = µ(a1H) and µ is well
defined. Notice next that µ(aH) = ϕ[aH] as defined above. Since
ϕ : G/H → ϕ[G ] is one-to-one and onto as shown above, then
µ : G/H → ϕ[G ] is one-to-one and onto. That is, µ is an isomorphism
and G/H is isomorphic to ϕ[G ], as claimed.
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Theorem 14.4

Theorem 14.4

Theorem 14.4. Let H be a subgroup of a group G . Then left coset
multiplication is well-defined by the equation (aH) · (bH) = (ab)H if and
only if H is a normal subgroup of G .

Proof. First, assume (aH) · (bH) = (ab)H is a well-defined binary
operation on left cosets. Let a ∈ G . We now show aH = Ha (and so H is
a normal subgroup of G ). Let x ∈ aH. We have a−1 ∈ a−1H and so
(xH) · (a−1H) = (xa−1H). Also, a ∈ aH and so
(aH) · (a1H) = (aa1) = eH = H.

If · is well defined then we must have
(xH) · (a−1H) = (aH) · (a−1H) (since both x and a can be used as
representatives of coset aH), that (xa−1)H = eH = H and so
xa−1 = h ∈ H. Then x = ha and x ∈ Ha. Therefore aH ⊂ Ha. Next, let
y ∈ Ha (this part is Exercise 14.25). Then y = ha for some h ∈ H. In this
left coset product (a−1H) · (aH), choose a−1h ∈ a−1H and a ∈ aH for the
representatives to get (a−1hH) · (aH) = (a−1ha)H and since
(a−1H) · (aH) = (a−1a)H = eH = H (· is well defined), it must be that
a−1ha = h′ for some h′ ∈ H.
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Theorem 14.4

Theorem 14.4 (continued)

Proof (continued). Then, ha = ah′ for some h′ ∈ H. That is,
y = ha ∈ aH. Therefore Ha ⊂ aH. Combining this with the result above,
gives aH = Ha and we have that the cosets of H coincide. Therefore, H is
a normal subgroup of G .

Second, suppose H is a normal subgroup of G and so left and right cosets
coincide. Consider a coset product ((ah1)H) · ((bh2)H) = (ah1bh2)H. So
to show that · is well defined, we need to show that (ah1bh2)H = (ab)H.

Now h1b ∈ Hb = bH (by hypothesis) and so h1b = bh3 for some h3 ∈ H.
Therefore (ah1)(bh2)H ∩ (ab)H 6= ∅. Since the left cosets of H partition
group G (Section II .10) then different cosets disjoint. So
(ah1bh2)H = (ab)H and (aH) · (bH) = ((ah1)H) · ((bh2)H). That is, · is
well defined.
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Corollary 14.5

Corollary 14.5

Corollary 14.5. Let H be a normal subgroup of G . Then the cosets of H
form a group G/H under the binary operation (aH) · (bH) = (ab)H.

Proof. First, (aH) · [(bH) · (cH)] = (aH) · ((bc)H) = (abc)H and
[(aH) · (bH)] · (cH) = ((ab)H) · (cH) = (abc)H, and so · is associative and
G1 holds.

Second, for all ah ∈ G/H, (aH) · (eH) = (ae)H = aH and G2 holds (it is
sufficient to consider one sided identities and inverses by page 43 and
Exercise 4.38).

Third, for all aH ∈ G/H, (aH)(a−1H) = (aa−1)H = eH = H and
(aH)−1 = (a−1)H; so G3 holds.
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Theorem 14.9

Theorem 14.9

Theorem 14.9. Let H be a normal subgroup of G . Then γ : G → G/H
given by γ(x) = xH is a homomorphism with kernel H.

Proof. Let x , y ∈ G . Then

γ(xy) = (xy)H = (xH) · (yH) = γ(x)γ(y),

and so γ is a homomorphism. Now xH = H if and only if x ∈ H (recall
that distinct cosets are disjoint) and so γ(x) = xH = H = γ(e) if and only
if x ∈ H—that is, the kernel of γ is H.
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and so γ is a homomorphism. Now xH = H if and only if x ∈ H (recall
that distinct cosets are disjoint) and so γ(x) = xH = H = γ(e) if and only
if x ∈ H—that is, the kernel of γ is H.
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Theorem 14.11. The Fundamental Homomorphism Theorem

Theorem 14.11. The Fundamental Homomorphism
Theorem

Theorem 14.11. The Fundamental Homomorphism Theorem.
Let ϕ : G → G ′ be a group homomorphism with kernel H, and let
γ : G → G/H be the homomorphism given by γ(g) = gH of Theorem
14.9. Then:

1 ϕ[G ] is a group,

2 µ : G/H → ϕ[G ] given by µ(gH) = ϕ(g) is an isomorphism, and

3 ϕ(g) = µ(γ(g)) = µ ◦ γ(g) for each g ∈ G .

µ is called the canonical (or natural) isomorphism between G/H and ϕ[G ].
γ is similarly the canonical (or natural) homomorphism between G and
G/H.

Proof. ϕ[G ] is a group by Theorem 13.12 Part (3). µ is an isomorphism
by Theorem 14.1. For g ∈ G , µ(γ(g)) = µ(gH) = ϕ(g) by the definitions
of µ and γ.
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Exercise 14.6

Exercise 14.6

Exercise 14.6. Find the order of Z12 × Z18/〈(4, 3)〉.

Solution. Notice that Z12×Z18 is abelian, and so H = 〈(4, 3)〉 is a normal
subgroup. Now, Z12 × Z18/〈(4, 3)〉 is the group of cosets of H = 〈(4, 3)〉.
Since |H| = 6 and all cosets of H are the same size (Section II.10), then
the number of cosets is |Z12 × Z18|/|H| = 12× 18/6 = 36. In Section
II.10, the number of cosets is the index (G : H) and equals |G |/|H| when
|G | is finite, so this technique works for general finite factor groups.
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Theorem 14.13

Theorem 14.13

Theorem.14.13. Let G be group and H a subgroup of G . The following
are equivalent

1. gH = Hg for all g ∈ G (that is, H is normal subgroup).

2. ghg−1 ∈ H for all g ∈ G and h ∈ H

3. gHg−1 = H for all g ∈ G .

Proof. Suppose (2) holds and H is a subgroup of G such that ghg−1 ∈ H
for all g ∈ G and all h ∈ H. Then gHg−1 = {ghg−1 | h ∈ H} ⊆ H for all
g ∈ G . Let h ∈ H. Then by the hypothesis of (2), g−1hg ∈ H, or
g−1hg = h1 for some h1 ∈ H. Then h = gh1g

−1 and h ∈ gHg−1. So
H ⊆ gHg−1. Therefore H = gHg−1 and (2) implies (3).
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Theorem 14.13

Theorem 14.13 (continued).

Proof (continued). Suppose (1) holds and H is a normal subgroup of
G : gH = Hg for all g ∈ G . Let g ∈ G and h ∈ G . Then for some h1 ∈ H
we have gh = h1g or ghg−1 = h1 and so ghg−1 ∈ H for all g ∈ G and all
h ∈ H. That is, (1) implies (2).

Suppose (3) holds and gHg−1 = H, we similarly have g−1H ⊆ Hg−1 or
equivalently Hg ⊆ gH. So gH = Hg and (3) implies (1). Hence we have
the implications (1) implies (2) implies (3) implies (1), and so all
statements (1), (2), (3) are equivalent, as claimed.
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Exercise 13.29

Exercise 13.29

Exercise 13.29. Let G be a group and let g ∈ G . Let ig : G → G be
defined by ig (x) = gxg−1 for x ∈ G . Then ig is an automorphism of G .

Proof. First, we show ig is a homomorphism for all g ∈ G . Let x , y ∈ G .
Then ig (xy) = g(xy)g−1 = g(xey)g−1 = g(x(g−1g))yg−1 =
(gxg−1)(gyg−1) = ig (x)ig (y).

Next, suppose ig (x) = ig (y). Then

gxg−1 = gyg−1 or xg−1 = yg−1,

by left cancellation and x = y by right cancellation. So ig is one-to-one.

Finally let y ∈ G . Then g−1yg ∈ G and ig (g−1yg) = g(g−1yg)g−1 = y
and so ig is onto. Therefore ig is an isomorphism from G to G - that is is
ig is an automorphism of G .
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