# Introduction to Modern Algebra

## Part III. Homomorphisms and Factor Groups

III.15. Factor-Group Computations and Simple Groups



Introduction to Modern Algebra

July 14, 2023

Lemma

**Lemma.** If G is a finite group and N is a subgroup of G where |N| = |G|/2, then N is a normal subgroup of G.

**Proof.** Since all cosets of N must be the same size and the cosets partition G, then there are only two cosets of N, namely N and aN where  $a \in G \setminus N$ . Now for any  $g \in G$ , (1) if  $g \in N$  then gN = Ng = N, and (2) if  $g \in G \setminus N$  then gN = Ng since this is the only coset of N other than N itself. So gN = Ng for all  $g \in G$ , and N is a normal subgroup.

> Introduction to Modern Algebra July 14, 2023

## Example 15.6

#### Example 15.6. Falsity of the Converse of the Theorem of Lagrange.

We have claimed in the past that the alternating group  $A_4$  (of order 4!/2 = 12) does not have a subgroup of order 6. Recall that Lagrange's Theorem states that the order of a subgroup divides the order of its group. This example shows that there may be divisors of the order of a group which may not be the order of a subgroup.

**Proof.** Suppose, to the contrary, that H is a subgroup of  $A_4$  of order 6. By Lemma, H must be a normal subgroup of G. Then  $A_4/H$  has only two elements, H and  $\sigma H$  where  $\sigma \in A_n \setminus H$ . Since  $A_4/H$  is a group of order 2, then it is isomorphic to  $\mathbb{Z}_2$  and the square of each element (coset) is the identity (H). So  $H \cdot H = H$  and  $(\sigma H) \cdot (\sigma H) = \sigma^2 H = H$ . So if  $\alpha \in H$ then  $\alpha^2 \in H$  and if  $\beta \notin H$  (then  $\beta \in \sigma H$ ) then  $\beta^2 \in H$ . So, the square of every element of  $A_4$  is in H.

## Example 15.6 (continued)

#### Example 15.6. Falsity of the Converse of the Theorem of Lagrange.

We have claimed in the past that the alternating group  $A_4$  (of order 4!/2 = 12) does not have a subgroup of order 6. Recall that Lagrange's Theorem states that the order of a subgroup divides the order of its group. This example shows that there may be divisors of the order of a group which may not be the order of a subgroup.

**Proof (continued).** But in  $A_4$  we have

$$(1,2,3) = (1,3,2)^2$$
 and  $(1,3,2) = (1,2,3)^2$ 

$$(1,2,4) = (1,4,2)^2$$
 and  $(1,4,2) = (1,2,4)^2$ 

$$(1,3,4) = (1,4,3)^2$$
 and  $(1,4,3) = (1,3,4)^2$ 

$$(2,3,4) = (2,4,3)^2$$
 and  $(2,4,3) = (2,3,4)^2$ .

So all 8 of the above (distinct) permutations are in H. This is a contradiction, since we assumed |H| = 6. Therefore no such H exists.

Exercise 15.6

**Exercise 15.6.** Classify  $\mathbb{Z} \times \mathbb{Z}/\langle (0,1) \rangle$  according to the Fundamental Theorem of Finitely Generated Abelian Groups.

**Solution.** Notice  $\langle (0,1) \rangle = \{0\} \times \mathbb{Z} = H$  and the cosets are  $(x,y)+\{0\}\times\mathbb{Z}=\{x\}\times(\mathbb{Z}+y)=\{x\}\times\mathbb{Z} \text{ for all } (x,y)\in\mathbb{Z}\times\mathbb{Z}.$  Now  $\{x\} \times \mathbb{Z}$  is isomorphic to  $\mathbb{Z}$  (define  $\varphi(\{x\} \times \mathbb{Z}) = x$  and  $\varphi$  is an isomorphism). So  $\mathbb{Z} \times \mathbb{Z}/\langle (0,1) \rangle$  is isomorphic to  $\mathbb{Z}$ . 

Introduction to Modern Algebra

July 14, 2023

Introduction to Modern Algebra

July 14, 2023 7 / 13

### Theorem 15.9

**Theorem 15.9.** A factor group of a cyclic group is cyclic.

**Proof.** Let G be cyclic where  $\langle a \rangle = G$ . Let N be a normal subgroups of G. Next, G/N consists of all cosets of N. Let  $gN \in G/N$  where  $g \in G$ . Since a generates G,  $g = a^n$  for some  $n \in \mathbb{Z}$ , and  $gN = (aN)^n = a^nN$ . Therefore  $G/N = \langle aN \rangle$  and G/N is cyclic, as claimed. 

### Theorem 15.8

**Theorem 15.8.** Let  $G = H \times K$  be the direct product of groups H and K. Then  $H = \{(h, e) \mid h \in H\}$  is a normal subgroup of G. Also, G/H is isomorphic to K. Similarly  $G/\widetilde{G}$  is isomorphic to H where  $K = \{(e, k) \mid k \in K\}.$ 

**Proof.** Define  $\pi_2: H \times K \to K$  where  $\pi_2(h, k) = k$ . Then  $\pi_2$  is a projection map (see Example 13.8) and so is a homomorphism. Now,  $\operatorname{Ker}(\pi_2) = \overset{\sim}{H}$  and so  $\overset{\sim}{H}$  is a normal subgroup of  $H \times K$  by Theorem 13.15. Since  $\pi_2$  is onto K then by Theorem 14.11,  $(H \times K)/H \cong K$  (here,  $H \times K$ plays the role of G, and K plays the role of  $\varphi[G]$  is Theorem 14.11).

#### Exercise 15.4

**Exercise 15.4.** Classify  $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$ .

**Solution.** Notice  $\langle (1,2) \rangle = \{(1,2),(2,4),(3,6),(0,0)\} = H$  and so  $|\mathbb{Z}_4 \times \mathbb{Z}_8/\langle (1,2)\rangle| = 4 \times 8/4 = 8$ . All groups are abelian, including the factor group. The abelian groups of order 8 are  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ ,  $\mathbb{Z}_2 \times \mathbb{Z}_4$ , and  $\mathbb{Z}_8$  (we don't distinguish between  $\mathbb{Z}_2 \times \mathbb{Z}_4$  and  $\mathbb{Z}_4 \times \mathbb{Z}_2$ ). We try to determine which of these three choices is correct by considering orders of elements of the factor group. Consider the coset (0,1) + H. The order of this coset is 8 since:

$$\underbrace{((0,1)+H)+((0,1)+H)+\cdots+((0,1)+H)}_{k \text{ times}} = (0,k)+H$$

and the smallest value of k for which this yields the identity is k = 8. Since the only choice from the three groups which has elements of order 8 is  $\mathbb{Z}_8$ , then the factor group must be isomorphic to  $\mathbb{Z}_8$ .

#### Theorem 15.18

**Theorem 15.18.** M is a maximal normal subgroup of G if and only if G/M is simple.

**Proof.** Let M be a maximal normal subgroup of G. Define  $\gamma:G\to G/M$  as  $\gamma(g)=gM$ . Then by Theorem 14.9,  $\gamma$  is a homomorphism with  $\operatorname{Ker}(\gamma)=M$ . ASSUME G/M is not simple and that N' is a proper nontrivial normal subgroup of G/M. Then by Theorem 15.16,  $\gamma^{-1}[N']$  is a normal subgroup of G. Since N' is nontrivial then  $N'\neq\{e\}=\{M\}$  (remember M is the identity in G/M). Also, we have  $\operatorname{Ker}(\gamma)=M$ , so  $\operatorname{Ker}(\gamma)\neq N'$  and  $\varphi^{-1}[N']\neq M$ . But  $\{e\}=\{M\}\subsetneq N'$  and so  $M\subsetneq \varphi^{-1}[N']$ . So  $\varphi^{-1}[N']$  properly contains M. Since N' is a proper subgroup of G/M, then it contains some but not all of the cosets of M. Since the cosets of M partition G (Section II.10), then  $\varphi^{-1}[N']$  contains some but not all elements of G. That is,  $\varphi^{-1}[N']$  is a proper subgroup of G. Therefore,  $\varphi^{-1}[N']$  is a nontrivial proper normal subgroup of G which properly contains M. But this CONTRADICTS the maximality M. So no such N' exists and G/M is simple, as claimed.

Introduction to Modern Algebra

ıly 14, 2023 10 / 1

Theorem 15.20

### Theorem 15.20

**Theorem 15.20.** Let G be a group. Then the set  $C = \{aba^{-1}b^{-1} \mid a, b \in G\}$  is a subgroup of G. Additionally, C is a normal subgroup of G then G/N is abelian if and only if  $C \leq N$ .

**Proof.** Since C is a subset of G, associativity of the binary operation is inherited from G and  $G_1$  holds. Taking a=e, we see that  $aba^{-1}be\in C$ , we see that  $aba^{-1}b^{-1}=e\in C$  and  $G_2$  holds. If  $x\in C$ , then  $x=aba^{-1}b^{-1}$  and  $x^{-1}=bab^{-1}a^{-1}\in C$  and  $G_3$  holds. Hence C is a group, as claimed.

For normality, let  $x \in C$  and  $g \in G$ . Then  $x = cdc^{-1}d^{-1}$  for some  $c, d \in G$ . Hence

$$g^{-1} \times g = g^{-1} \left( cdc^{-1}d^{-1} \right) g = g^{-1} \left( cdc^{-1}ed^{-1} \right) g$$

$$= g^{-1}cdc^{-1} \left( gd^{1}dg^{-1} \right) d^{-1}g \text{ since } e = gd^{-1}dg^{-1}$$

$$= \left[ \left( g^{-1}c \right) d \left( g^{-1}c \right)^{-1} d^{-1} \right] \left[ dg^{-1}d^{-1}g \right] \dots$$

## Theorem 15.18 (continued)

**Proof (continued).** Now let G/M be simple. ASSUME that M is not a maximal normal subgroup and that there is a proper normal subgroup N of G properly containing M (i.e.,  $M \subseteq N \subseteq G$ ). Then by Theorem 15.16,  $\gamma[N]$  is a normal subgroup of  $\gamma[G] = G/M$  where  $\gamma$  is as defined above. Now  $Ker(\gamma) = \{M\}$  (remember that M is the identity in G/M). Hence  $\gamma[N]$  is a nontrivial normal subgroup of G/M. Now we show that  $\gamma[N]$  is a proper subgroup of G/M. Recall that  $\gamma$  maps elements of G to cosets of M. So the only way that  $\gamma[N] = G/M$  is if N contains an element of each coset of M. But we assumed  $M \subseteq N$ , and so if N contains an element of each coset of M, then (since N is a group and so is closed under the binary operation) N must contain all cosets of M—that is, M=G. But this CONTRADICTS the choice of N as a proper subgroup of G. Hence Ndoes not contain an element from each coset of M and  $\gamma[N] \neq G/M$ . That is,  $\gamma[N] \subseteq G/M$ . Therefore,  $\gamma[N]$  is a proper nontrivial subgroup of G/M. But this contradicts the fact that G/M is simple. Therefore, no such N exists and M is a maximal normal subgroup of G, as claimed.

Introduction to Modern Algebra

Theorem 15.2

# Theorem 15.20 (continued).

Proof (continued). ...

$$g^{-1} \times g = \left[ \left( g^{-1} c \right) d \left( g^{-1} c \right)^{-1} d^{-1} \right] \left[ d g^{-1} d^{-1} g \right] \in C$$
since  $\left( g^{-1} c \right) d \left( g^{-1} c \right)^{-1} d^{-1}$ ,

so that  $dg^{-1}d^{-1}g \in C$ . So  $g^{-1}xg \in C$  and C is a normal subgroup of G by Theorem 14.13, as claimed.

Now let N be a normal subgroup of G ( $N \triangleleft G$ ). Suppose G/n is abelian. Then for all  $a,b \in G$ 

$$\left(a^{-1}b^{-1}\right)N = \left(a^{-1}N\right)\left(b^{-1}N\right) = \left(b^{-1}N\right)\left(a^{-1}N\right) = b^{-1}a^{-1}N$$
 or  $\left(aba^{-1}b^{-1}\right)N = N$  and so  $aba^{-1}b^{-1} \in N$  and  $C \leq N$ .

Let N be a normal subgroup of G. Suppose  $C \leq N$ . Then for all  $a, b \in G$   $(aN)(bN) = (ab) N = ab (b^{-1}a^{-1}ba) N$ , since  $b^{-1}a^{-1}ba \in C \subseteq N = baN = (bN)(aN)$ , and so G/N is abelian, as claimed.

July 14, 2023 11 / 13