Introduction to Modern Algebra

Part III. Homomorphisms and Factor Groups

III.15. Factor-Group Computations and Simple Groups

Table of contents

(1) Lemma
(2) Example 15.6. Falsity of the Converse of the Theorem of Lagrange
(3) Exercise 15.6
(4) Theorem 15.8
(5) Theorem 15.9
(6) Exercise 15.4
(7) Theorem 15.18
(8) Theorem 15.20

Lemma

Lemma. If G is a finite group and N is a subgroup of G where $|N|=|G| / 2$, then N is a normal subgroup of G.

Proof. Since all cosets of N must be the same size and the cosets partition G, then there are only two cosets of N, namely N and $a N$ where $a \in G \backslash N$. Now for any $g \in G$, (1) if $g \in N$ then $g N=N g=N$, and (2) if $g \in G \backslash N$ then $g N=N g$ since this is the only coset of N other than N itself. So $g N=N g$ for all $g \in G$, and N is a normal subgroup.

Lemma

Lemma. If G is a finite group and N is a subgroup of G where $|N|=|G| / 2$, then N is a normal subgroup of G.

Proof. Since all cosets of N must be the same size and the cosets partition G, then there are only two cosets of N, namely N and a N where $a \in G \backslash N$. Now for any $g \in G$, (1) if $g \in N$ then $g N=N g=N$, and (2) if $g \in G \backslash N$ then $g N=N g$ since this is the only coset of N other than N itself. So $g N=N g$ for all $g \in G$, and N is a normal subgroup.

Example 15.6

Example 15.6. Falsity of the Converse of the Theorem of Lagrange.
We have claimed in the past that the alternating group A_{4} (of order $4!/ 2=12$) does not have a subgroup of order 6 . Recall that Lagrange's Theorem states that the order of a subgroup divides the order of its group. This example shows that there may be divisors of the order of a group which may not be the order of a subgroup.

Proof. Suppose, to the contrary, that H is a subgroup of A_{4} of order 6 . By Lemma, H must be a normal subgroup of G. Then A_{4} / H has only two elements, H and σH where $\sigma \in A_{n} \backslash H$. Since A_{4} / H is a group of order 2, then it is isomorphic to \mathbb{Z}_{2} and the square of each element (coset) is the identity (H). So $H \cdot H=H$ and $(\sigma H) \cdot(\sigma H)=\sigma^{2} H=H$. So if $\alpha \in H$ then $\alpha^{2} \in H$ and if $\beta \notin H$ (then $\beta \in \sigma H$) then $\beta^{2} \in H$. So, the square of every element of A_{4} is in H.

Example 15.6

Example 15.6. Falsity of the Converse of the Theorem of Lagrange.
We have claimed in the past that the alternating group A_{4} (of order $4!/ 2=12$) does not have a subgroup of order 6 . Recall that Lagrange's Theorem states that the order of a subgroup divides the order of its group. This example shows that there may be divisors of the order of a group which may not be the order of a subgroup.

Proof. Suppose, to the contrary, that H is a subgroup of A_{4} of order 6 . By Lemma, H must be a normal subgroup of G. Then A_{4} / H has only two elements, H and σH where $\sigma \in A_{n} \backslash H$. Since A_{4} / H is a group of order 2, then it is isomorphic to \mathbb{Z}_{2} and the square of each element (coset) is the identity (H). So $H \cdot H=H$ and $(\sigma H) \cdot(\sigma H)=\sigma^{2} H=H$. So if $\alpha \in H$ then $\alpha^{2} \in H$ and if $\beta \notin H$ (then $\beta \in \sigma H$) then $\beta^{2} \in H$. So, the square of every element of A_{4} is in H.

Example 15.6 (continued)

Example 15.6. Falsity of the Converse of the Theorem of Lagrange. We have claimed in the past that the alternating group A_{4} (of order $4!/ 2=12$) does not have a subgroup of order 6 . Recall that Lagrange's Theorem states that the order of a subgroup divides the order of its group. This example shows that there may be divisors of the order of a group which may not be the order of a subgroup.

Proof (continued). But in A_{4} we have

$$
\begin{aligned}
& (1,2,3)=(1,3,2)^{2} \text { and }(1,3,2)=(1,2,3)^{2} \\
& (1,2,4)=(1,4,2)^{2} \text { and }(1,4,2)=(1,2,4)^{2} \\
& (1,3,4)=(1,4,3)^{2} \text { and }(1,4,3)=(1,3,4)^{2} \\
& (2,3,4)=(2,4,3)^{2} \text { and }(2,4,3)=(2,3,4)^{2} .
\end{aligned}
$$

So all 8 of the above (distinct) permutations are in H. This is a contradiction, since we assumed $|H|=6$. Therefore no such H exists.

Exercise 15.6

Exercise 15.6. Classify $\mathbb{Z} \times \mathbb{Z} /\langle(0,1)\rangle$ according to the Fundamental Theorem of Finitely Generated Abelian Groups.

Solution. Notice $\langle(0,1)\rangle=\{0\} \times \mathbb{Z}=H$ and the cosets are $(x, y)+\{0\} \times \mathbb{Z}=\{x\} \times(\mathbb{Z}+y)=\{x\} \times \mathbb{Z}$ for all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. Now $\{x\} \times \mathbb{Z}$ is isomorphic to \mathbb{Z} (define $\varphi(\{x\} \times \mathbb{Z})=x$ and φ is an isomorphism). So $\mathbb{Z} \times \mathbb{Z} /\langle(0,1)\rangle$ is isomorphic to \mathbb{Z}.

Exercise 15.6

Exercise 15.6. Classify $\mathbb{Z} \times \mathbb{Z} /\langle(0,1)\rangle$ according to the Fundamental Theorem of Finitely Generated Abelian Groups.

Solution. Notice $\langle(0,1)\rangle=\{0\} \times \mathbb{Z}=H$ and the cosets are $(x, y)+\{0\} \times \mathbb{Z}=\{x\} \times(\mathbb{Z}+y)=\{x\} \times \mathbb{Z}$ for all $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. Now $\{x\} \times \mathbb{Z}$ is isomorphic to \mathbb{Z} (define $\varphi(\{x\} \times \mathbb{Z})=x$ and φ is an isomorphism). So $\mathbb{Z} \times \mathbb{Z} /\langle(0,1)\rangle$ is isomorphic to \mathbb{Z}.

Theorem 15.8

Theorem 15.8. Let $G=H \times K$ be the direct product of groups H and K. Then $H=\{(h, e) \mid h \in H\}$ is a normal subgroup of G. Also, G / H is isomorphic to K. Similarly G / \tilde{G} is isomorphic to H where $\tilde{K}=\{(e, k) \mid k \in K\}$.

Proof. Define $\pi_{2}: H \times K \rightarrow K$ where $\pi_{2}(h, k)=k$. Then π_{2} is a projection map (see Example 13.8) and so is a homomorphism. Now, $\operatorname{Ker}\left(\pi_{2}\right)=H$ and so H is a normal subgroup of $H \times K$ by Theorem 13.15. Since π_{2} is onto K then by Theorem 14.11, $(H \times K) / H \cong K$ (here, $H \times K$ plays the role of G, and K plays the role of $\varphi[G]$ is Theorem 14.11).

Theorem 15.8

Theorem 15.8. Let $G=H \times K$ be the direct product of groups H and K. Then $H=\{(h, e) \mid h \in H\}$ is a normal subgroup of G. Also, G / H is isomorphic to K. Similarly G / \tilde{G} is isomorphic to H where $\widetilde{K}=\{(e, k) \mid k \in K\}$.

Proof. Define $\pi_{2}: H \times K \rightarrow K$ where $\pi_{2}(h, k)=k$. Then π_{2} is a projection map (see Example 13.8) and so is a homomorphism. Now, $\operatorname{Ker}\left(\pi_{2}\right)=H$ and so H is a normal subgroup of $H \times K$ by Theorem 13.15.
Since π_{2} is onto K then by Theorem 14.11, $(H \times K) / H \cong K$ (here, $H \times K$ plays the role of G, and K plays the role of $\varphi[G]$ is Theorem 14.11).

Theorem 15.9

Theorem 15.9. A factor group of a cyclic group is cyclic.

Proof. Let G be cyclic where $\langle a\rangle=G$. Let N be a normal subgroups of G. Next, G / N consists of all cosets of N. Let $g N \in G / N$ where $g \in G$. Since a generates $G, g=a^{n}$ for some $n \in \mathbb{Z}$, and $g N=(a N)^{n}=a^{n} N$. Therefore $G / N=\langle a N\rangle$ and G / N is cyclic, as claimed.

Theorem 15.9

Theorem 15.9. A factor group of a cyclic group is cyclic.

Proof. Let G be cyclic where $\langle a\rangle=G$. Let N be a normal subgroups of G. Next, G / N consists of all cosets of N. Let $g N \in G / N$ where $g \in G$. Since a generates $G, g=a^{n}$ for some $n \in \mathbb{Z}$, and $g N=(a N)^{n}=a^{n} N$. Therefore $G / N=\langle a N\rangle$ and G / N is cyclic, as claimed.

Exercise 15.4

Exercise 15.4. Classify $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{8}\right) /\langle(1,2)\rangle$.
Solution. Notice $\langle(1,2)\rangle=\{(1,2),(2,4),(3,6),(0,0)\}=H$ and so $\left|\mathbb{Z}_{4} \times \mathbb{Z}_{8} /\langle(1,2)\rangle\right|=4 \times 8 / 4=8$. All groups are abelian, including the factor group. The abelian groups of order 8 are $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$, and \mathbb{Z}_{8} (we don't distinguish between $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$). We try to determine which of these three choices is correct by considering orders of elements of the factor group.

Exercise 15.4

Exercise 15.4. Classify $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{8}\right) /\langle(1,2)\rangle$.
Solution. Notice $\langle(1,2)\rangle=\{(1,2),(2,4),(3,6),(0,0)\}=H$ and so $\left|\mathbb{Z}_{4} \times \mathbb{Z}_{8} /\langle(1,2)\rangle\right|=4 \times 8 / 4=8$. All groups are abelian, including the factor group. The abelian groups of order 8 are $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$, and \mathbb{Z}_{8} (we don't distinguish between $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$). We try to determine which of these three choices is correct by considering orders of elements of the factor group. Consider the $\operatorname{coset}(0,1)+H$. The order of this coset is 8 since:

k times
and the smallest value of k for which this yields the identity is $k=8$. Since the only choice from the three groups which has elements of order 8 is \mathbb{Z}_{8}, then the factor group must be isomorphic to \mathbb{Z}_{8}.

Exercise 15.4

Exercise 15.4. Classify $\left(\mathbb{Z}_{4} \times \mathbb{Z}_{8}\right) /\langle(1,2)\rangle$.
Solution. Notice $\langle(1,2)\rangle=\{(1,2),(2,4),(3,6),(0,0)\}=H$ and so $\left|\mathbb{Z}_{4} \times \mathbb{Z}_{8} /\langle(1,2)\rangle\right|=4 \times 8 / 4=8$. All groups are abelian, including the factor group. The abelian groups of order 8 are $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$, and \mathbb{Z}_{8} (we don't distinguish between $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$). We try to determine which of these three choices is correct by considering orders of elements of the factor group. Consider the coset $(0,1)+H$. The order of this coset is 8 since:

$$
\underbrace{((0,1)+H)+((0,1)+H)+\cdots+((0,1)+H)}_{k \text { times }}=(0, k)+H
$$

and the smallest value of k for which this yields the identity is $k=8$. Since the only choice from the three groups which has elements of order 8 is \mathbb{Z}_{8}, then the factor group must be isomorphic to \mathbb{Z}_{8}.

Theorem 15.18

Theorem 15.18. M is a maximal normal subgroup of G if and only if G / M is simple.

Proof. Let M be a maximal normal subgroup of G. Define $\gamma: G \rightarrow G / M$ as $\gamma(g)=g M$. Then by Theorem 14.9, γ is a homomorphism with $\operatorname{Ker}(\gamma)=M$. ASSUME G / M is not simple and that N^{\prime} is a proper nontrivial normal subgroup of G / M. Then by Theorem 15.16, $\gamma^{-1}\left[N^{\prime}\right]$ is a normal subgroup of G.

Theorem 15.18

Theorem 15.18. M is a maximal normal subgroup of G if and only if G / M is simple.
Proof. Let M be a maximal normal subgroup of G. Define $\gamma: G \rightarrow G / M$ as $\gamma(g)=g M$. Then by Theorem 14.9, γ is a homomorphism with $\operatorname{Ker}(\gamma)=M$. ASSUME G / M is not simple and that N^{\prime} is a proper nontrivial normal subgroup of G / M. Then by Theorem 15.16, $\gamma^{-1}\left[N^{\prime}\right]$ is a normal subgroup of G. Since N^{\prime} is nontrivial then $N^{\prime} \neq\{e\}=\{M\}$ (remember M is the identity in G / M). Also, we have $\operatorname{Ker}(\gamma)=M$, so $\operatorname{Ker}(\gamma) \neq N^{\prime}$ and $\varphi^{-1}\left[N^{\prime}\right] \neq M$. But $\{e\}=\{M\} \subsetneq N^{\prime}$ and so $M \subsetneq \varphi^{-1}\left[N^{\prime}\right]$. So $\varphi^{-1}\left[N^{\prime}\right]$ properly contains M.

Theorem 15.18

Theorem 15.18. M is a maximal normal subgroup of G if and only if G / M is simple.
Proof. Let M be a maximal normal subgroup of G. Define $\gamma: G \rightarrow G / M$ as $\gamma(g)=g M$. Then by Theorem 14.9, γ is a homomorphism with $\operatorname{Ker}(\gamma)=M$. ASSUME G / M is not simple and that N^{\prime} is a proper nontrivial normal subgroup of G / M. Then by Theorem 15.16, $\gamma^{-1}\left[N^{\prime}\right]$ is a normal subgroup of G. Since N^{\prime} is nontrivial then $N^{\prime} \neq\{e\}=\{M\}$ (remember M is the identity in G / M). Also, we have $\operatorname{Ker}(\gamma)=M$, so $\operatorname{Ker}(\gamma) \neq N^{\prime}$ and $\varphi^{-1}\left[N^{\prime}\right] \neq M$. But $\{e\}=\{M\} \subsetneq N^{\prime}$ and so $M \subsetneq \varphi^{-1}\left[N^{\prime}\right]$. So $\varphi^{-1}\left[N^{\prime}\right]$ properly contains M. Since N^{\prime} is a proper subgroup of G / M, then it contains some but not all of the cosets of M. Since the cosets of M partition G (Section II.10), then $\varphi^{-1}\left[N^{\prime}\right]$ contains some but not all elements of G. That is, $\varphi^{-1}\left[N^{\prime}\right]$ is a proper subgroup of G. Therefore, $\varphi^{-1}\left[N^{\prime}\right]$ is a nontrivial proper normal subgroup of G which properly contains M. But this CONTRADICTS the maximality M. So no such N^{\prime} exists and G / M is simple, as claimed

Theorem 15.18

Theorem 15.18. M is a maximal normal subgroup of G if and only if G / M is simple.
Proof. Let M be a maximal normal subgroup of G. Define $\gamma: G \rightarrow G / M$ as $\gamma(g)=g M$. Then by Theorem 14.9, γ is a homomorphism with $\operatorname{Ker}(\gamma)=M$. ASSUME G / M is not simple and that N^{\prime} is a proper nontrivial normal subgroup of G / M. Then by Theorem 15.16, $\gamma^{-1}\left[N^{\prime}\right]$ is a normal subgroup of G. Since N^{\prime} is nontrivial then $N^{\prime} \neq\{e\}=\{M\}$ (remember M is the identity in G / M). Also, we have $\operatorname{Ker}(\gamma)=M$, so $\operatorname{Ker}(\gamma) \neq N^{\prime}$ and $\varphi^{-1}\left[N^{\prime}\right] \neq M$. But $\{e\}=\{M\} \subsetneq N^{\prime}$ and so $M \subsetneq \varphi^{-1}\left[N^{\prime}\right]$. So $\varphi^{-1}\left[N^{\prime}\right]$ properly contains M. Since N^{\prime} is a proper subgroup of G / M, then it contains some but not all of the cosets of M. Since the cosets of M partition G (Section II.10), then $\varphi^{-1}\left[N^{\prime}\right]$ contains some but not all elements of G. That is, $\varphi^{-1}\left[N^{\prime}\right]$ is a proper subgroup of G. Therefore, $\varphi^{-1}\left[N^{\prime}\right]$ is a nontrivial proper normal subgroup of G which properly contains M. But this CONTRADICTS the maximality M. So no such N^{\prime} exists and G / M is simple, as claimed.

Theorem 15.18 (continued)

Proof (continued). Now let G / M be simple. ASSUME that M is not a maximal normal subgroup and that there is a proper normal subgroup N of G properly containing M (i.e., $M \subsetneq N \subsetneq G$). Then by Theorem 15.16, $\gamma[N]$ is a normal subgroup of $\gamma[G]=G / M$ where γ is as defined above. Now $\operatorname{Ker}(\gamma)=\{M\}$ (remember that M is the identity in G / M). Hence $\gamma[N]$ is a nontrivial normal subgroup of G / M. Now we show that $\gamma[N]$ is a proper subgroup of G / M. Recall that γ maps elements of G to cosets of M. So the only way that $\gamma[N]=G / M$ is if N contains an element of each coset of M. But we assumed $M \subsetneq N$, and so if N contains an element of each coset of M, then (since N is a group and so is closed under the binary operation) N must contain all cosets of M-that is, $M=G$. But this CONTRADICTS the choice of N as a proper subgroup of G.

Theorem 15.18 (continued)

Proof (continued). Now let G / M be simple. ASSUME that M is not a maximal normal subgroup and that there is a proper normal subgroup N of G properly containing M (i.e., $M \subsetneq N \subsetneq G$). Then by Theorem 15.16, $\gamma[N]$ is a normal subgroup of $\gamma[G]=G / M$ where γ is as defined above. Now $\operatorname{Ker}(\gamma)=\{M\}$ (remember that M is the identity in G / M). Hence $\gamma[N]$ is a nontrivial normal subgroup of G / M. Now we show that $\gamma[N]$ is a proper subgroup of G / M. Recall that γ maps elements of G to cosets of M. So the only way that $\gamma[N]=G / M$ is if N contains an element of each coset of M. But we assumed $M \subsetneq N$, and so if N contains an element of each coset of M, then (since N is a group and so is closed under the binary operation) N must contain all cosets of M-that is, $M=G$. But this CONTRADICTS the choice of N as a proper subgroup of G. Hence N does not contain an element from each coset of M and $\gamma[N] \neq G / M$. That is, $\gamma[N] \subsetneq G / M$. Therefore, $\gamma[N]$ is a proper nontrivial subgroup of G / M. But this contradicts the fact that G / M is simple. Therefore, no such N exists and M is a maximal normal subgroup of G, as claimed.

Theorem 15.18 (continued)

Proof (continued). Now let G / M be simple. ASSUME that M is not a maximal normal subgroup and that there is a proper normal subgroup N of G properly containing M (i.e., $M \subsetneq N \subsetneq G$). Then by Theorem 15.16, $\gamma[N]$ is a normal subgroup of $\gamma[G]=G / M$ where γ is as defined above. Now $\operatorname{Ker}(\gamma)=\{M\}$ (remember that M is the identity in G / M). Hence $\gamma[N]$ is a nontrivial normal subgroup of G / M. Now we show that $\gamma[N]$ is a proper subgroup of G / M. Recall that γ maps elements of G to cosets of M. So the only way that $\gamma[N]=G / M$ is if N contains an element of each coset of M. But we assumed $M \subsetneq N$, and so if N contains an element of each coset of M, then (since N is a group and so is closed under the binary operation) N must contain all cosets of M-that is, $M=G$. But this CONTRADICTS the choice of N as a proper subgroup of G. Hence N does not contain an element from each coset of M and $\gamma[N] \neq G / M$. That is, $\gamma[N] \subsetneq G / M$. Therefore, $\gamma[N]$ is a proper nontrivial subgroup of G / M. But this contradicts the fact that G / M is simple. Therefore, no such N exists and M is a maximal normal subgroup of G, as claimed.

Theorem 15.20

Theorem 15.20. Let G be a group. Then the set $C=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$ is a subgroup of G. Additionally, C is a normal subgroup of G then G / N is abelian if and only if $C \leq N$.

Proof. Since C is a subset of G, associativity of the binary operation is inherited from G and G_{1} holds. Taking $a=e$, we see that $a b a^{-1} b e \in C$, we see that $a b a^{-1} b^{-1}=e \in C$ and G_{2} holds. If $x \in C$, then $x=a b a^{-1} b^{-1}$ and $x^{-1}=b a b^{-1} a^{-1} \in C$ and G_{3} holds. Hence C is a group, as claimed.

Theorem 15.20

Theorem 15.20. Let G be a group. Then the set $C=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$ is a subgroup of G. Additionally, C is a normal subgroup of G then G / N is abelian if and only if $C \leq N$.

Proof. Since C is a subset of G, associativity of the binary operation is inherited from G and G_{1} holds. Taking $a=e$, we see that $a b a^{-1} b e \in C$, we see that $a b a^{-1} b^{-1}=e \in C$ and G_{2} holds. If $x \in C$, then $x=a b a^{-1} b^{-1}$ and $x^{-1}=b a b^{-1} a^{-1} \in C$ and G_{3} holds. Hence C is a group, as claimed.

For normality, let $x \in C$ and $g \in G$. Then $x=c d c^{-1} d^{-1}$ for some $c, d \in G$. Hence

Theorem 15.20

Theorem 15.20. Let G be a group. Then the set $C=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\}$ is a subgroup of G. Additionally, C is a normal subgroup of G then G / N is abelian if and only if $C \leq N$.

Proof. Since C is a subset of G, associativity of the binary operation is inherited from G and G_{1} holds. Taking $a=e$, we see that $a b a^{-1} b e \in C$, we see that $a b a^{-1} b^{-1}=e \in C$ and G_{2} holds. If $x \in C$, then $x=a b a^{-1} b^{-1}$ and $x^{-1}=b a b^{-1} a^{-1} \in C$ and G_{3} holds. Hence C is a group, as claimed.

For normality, let $x \in C$ and $g \in G$. Then $x=c d c^{-1} d^{-1}$ for some $c, d \in G$. Hence

$$
\begin{aligned}
g^{-1} x g & =g^{-1}\left(c d c^{-1} d^{-1}\right) g=g^{-1}\left(c d c^{-1} e d^{-1}\right) g \\
& =g^{-1} c d c^{-1}\left(g d^{1} d g^{-1}\right) d^{-1} g \text { since } e=g d^{-1} d g^{-1} \\
& =\left[\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1}\right]\left[d g^{-1} d^{-1} g\right] \ldots
\end{aligned}
$$

Theorem 15.20 (continued).

Proof (continued). ...

$$
\begin{aligned}
g^{-1} \times g= & {\left[\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1}\right]\left[d g^{-1} d^{-1} g\right] \in C } \\
& \text { since }\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1},
\end{aligned}
$$

so that $d g^{-1} d^{-1} g \in C$. So $g^{-1} x g \in C$ and C is a normal subgroup of G by Theorem 14.13, as claimed.

Now let N be a normal subgroup of $G(N \triangleleft G)$. Suppose G / n is abelian. Then for all $a, b \in G$
$\left(a^{-1} b^{-1}\right) N=\left(a^{-1} N\right)\left(b^{-1} N\right)=\left(b^{-1} N\right)\left(a^{-1} N\right)=b^{-1} a^{-1} N$ or
$\left(a b a^{-1} b^{-1}\right) N=N$ and so $a b a^{-1} b^{-1} \in N$ and $C \leq N$.

Theorem 15.20 (continued).

Proof (continued). ...

$$
\begin{aligned}
g^{-1} \times g= & {\left[\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1}\right]\left[d g^{-1} d^{-1} g\right] \in C } \\
& \text { since }\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1}
\end{aligned}
$$

so that $d g^{-1} d^{-1} g \in C$. So $g^{-1} x g \in C$ and C is a normal subgroup of G by Theorem 14.13, as claimed.

Now let N be a normal subgroup of $G(N \triangleleft G)$. Suppose G / n is abelian.
Then for all $a, b \in G$
$\left(a^{-1} b^{-1}\right) N=\left(a^{-1} N\right)\left(b^{-1} N\right)=\left(b^{-1} N\right)\left(a^{-1} N\right)=b^{-1} a^{-1} N$ or $\left(a b a^{-1} b^{-1}\right) N=N$ and so $a b a^{-1} b^{-1} \in N$ and $C \leq N$.

Let N be a normal subgroup of G. Suppose $C \leq N$. Then for all $a, b \in G$ $(a N)(b N)=(a b) N=a b\left(b^{-1} a^{-1} b a\right) N$, since
$b^{-1} a^{-1} b a \in C \subseteq N=b a N=(b N)(a N)$, and so G / N is abelian, as

Theorem 15.20 (continued).

Proof (continued). ...

$$
\begin{aligned}
g^{-1} \times g= & {\left[\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1}\right]\left[d g^{-1} d^{-1} g\right] \in C } \\
& \text { since }\left(g^{-1} c\right) d\left(g^{-1} c\right)^{-1} d^{-1}
\end{aligned}
$$

so that $d g^{-1} d^{-1} g \in C$. So $g^{-1} x g \in C$ and C is a normal subgroup of G by Theorem 14.13, as claimed.

Now let N be a normal subgroup of $G(N \triangleleft G)$. Suppose G / n is abelian.
Then for all $a, b \in G$
$\left(a^{-1} b^{-1}\right) N=\left(a^{-1} N\right)\left(b^{-1} N\right)=\left(b^{-1} N\right)\left(a^{-1} N\right)=b^{-1} a^{-1} N$ or
$\left(a b a^{-1} b^{-1}\right) N=N$ and so $a b a^{-1} b^{-1} \in N$ and $C \leq N$.
Let N be a normal subgroup of G. Suppose $C \leq N$. Then for all $a, b \in G$ $(a N)(b N)=(a b) N=a b\left(b^{-1} a^{-1} b a\right) N$, since $b^{-1} a^{-1} b a \in C \subseteq N=b a N=(b N)(a N)$, and so G / N is abelian, as claimed.

