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Lemma

Lemma

Lemma. If G is a finite group and N is a subgroup of G where
|N| = |G |/2, then N is a normal subgroup of G .

Proof. Since all cosets of N must be the same size and the cosets
partition G , then there are only two cosets of N, namely N and aN where
a ∈ G \ N. Now for any g ∈ G , (1) if g ∈ N then gN = Ng = N, and (2)
if g ∈ G \ N then gN = Ng since this is the only coset of N other than N
itself. So gN = Ng for all g ∈ G , and N is a normal subgroup.
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Example 15.6. Falsity of the Converse of the Theorem of Lagrange

Example 15.6

Example 15.6. Falsity of the Converse of the Theorem of Lagrange.
We have claimed in the past that the alternating group A4 (of order
4!/2 = 12) does not have a subgroup of order 6. Recall that Lagrange’s
Theorem states that the order of a subgroup divides the order of its group.
This example shows that there may be divisors of the order of a group
which may not be the order of a subgroup.

Proof. Suppose, to the contrary, that H is a subgroup of A4 of order 6.
By Lemma, H must be a normal subgroup of G . Then A4/H has only two
elements, H and σH where σ ∈ An \ H. Since A4/H is a group of order 2,
then it is isomorphic to Z2 and the square of each element (coset) is the
identity (H). So H · H = H and (σH) · (σH) = σ2H = H. So if α ∈ H
then α2 ∈ H and if β /∈ H (then β ∈ σH) then β2 ∈ H. So, the square of
every element of A4 is in H.
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Example 15.6. Falsity of the Converse of the Theorem of Lagrange

Example 15.6 (continued)

Example 15.6. Falsity of the Converse of the Theorem of Lagrange.
We have claimed in the past that the alternating group A4 (of order
4!/2 = 12) does not have a subgroup of order 6. Recall that Lagrange’s
Theorem states that the order of a subgroup divides the order of its group.
This example shows that there may be divisors of the order of a group
which may not be the order of a subgroup.

Proof (continued). But in A4 we have

(1, 2, 3) = (1, 3, 2)2 and (1, 3, 2) = (1, 2, 3)2

(1, 2, 4) = (1, 4, 2)2 and (1, 4, 2) = (1, 2, 4)2

(1, 3, 4) = (1, 4, 3)2 and (1, 4, 3) = (1, 3, 4)2

(2, 3, 4) = (2, 4, 3)2 and (2, 4, 3) = (2, 3, 4)2.

So all 8 of the above (distinct) permutations are in H. This is a
contradiction, since we assumed |H| = 6. Therefore no such H exists.

() Introduction to Modern Algebra July 14, 2023 5 / 13



Exercise 15.6

Exercise 15.6

Exercise 15.6. Classify Z × Z/〈(0, 1)〉 according to the Fundamental
Theorem of Finitely Generated Abelian Groups.

Solution. Notice 〈(0, 1)〉 = {0} × Z = H and the cosets are
(x , y) + {0} × Z = {x} × (Z + y) = {x} × Z for all (x , y) ∈ Z × Z. Now
{x} × Z is isomorphic to Z (define ϕ({x} × Z) = x and ϕ is an
isomorphism). So Z × Z/〈(0, 1)〉 is isomorphic to Z.
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Theorem 15.8

Theorem 15.8

Theorem 15.8. Let G = H × K be the direct product of groups H and

K . Then H = {(h, e) | h ∈ H} is a normal subgroup of G . Also, G/
∼
H is

isomorphic to K . Similarly G/
∼
G is isomorphic to H where

∼
K = {(e, k) | k ∈ K}.

Proof. Define π2 : H × K → K where π2 (h, k) = k. Then π2 is a
projection map (see Example 13.8) and so is a homomorphism. Now,

Ker (π2) =
∼
H and so

∼
H is a normal subgroup of H × K by Theorem 13.15.

Since π2 is onto K then by Theorem 14.11, (H × K ) /
∼
H ∼= K (here, H ×K

plays the role of G , and K plays the role of ϕ [G ] is Theorem 14.11).
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Theorem 15.9

Theorem 15.9

Theorem 15.9. A factor group of a cyclic group is cyclic.

Proof. Let G be cyclic where 〈a〉 = G . Let N be a normal subgroups of
G . Next, G/N consists of all cosets of N. Let gN ∈ G/N where g ∈ G .
Since a generates G , g = an for some n ∈ Z, and gN = (aN)n = anN.
Therefore G/N = 〈aN〉 and G/N is cyclic, as claimed.
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Exercise 15.4

Exercise 15.4

Exercise 15.4. Classify (Z4 × Z8)/〈(1, 2)〉.

Solution. Notice 〈(1, 2)〉 = {(1, 2), (2, 4), (3, 6), (0, 0)} = H and so
|Z4 × Z8/〈(1, 2)〉| = 4× 8/4 = 8. All groups are abelian, including the
factor group. The abelian groups of order 8 are Z2 × Z2 × Z2, Z2 × Z4,
and Z8 (we don’t distinguish between Z2 × Z4 and Z4 × Z2). We try to
determine which of these three choices is correct by considering orders of
elements of the factor group.

Consider the coset (0, 1) + H. The order of
this coset is 8 since:

((0, 1) + H) + ((0, 1) + H) + · · ·+ ((0, 1) + H)︸ ︷︷ ︸
k times

= (0, k) + H

and the smallest value of k for which this yields the identity is k = 8.
Since the only choice from the three groups which has elements of order 8
is Z8, then the factor group must be isomorphic to Z8.
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Theorem 15.18

Theorem 15.18

Theorem 15.18. M is a maximal normal subgroup of G if and only if
G/M is simple.

Proof. Let M be a maximal normal subgroup of G . Define γ : G → G/M
as γ(g) = gM. Then by Theorem 14.9, γ is a homomorphism with
Ker(γ) = M. ASSUME G/M is not simple and that N ′ is a proper
nontrivial normal subgroup of G/M. Then by Theorem 15.16, γ−1[N ′] is a
normal subgroup of G .

Since N ′ is nontrivial then N ′ 6= {e} = {M}
(remember M is the identity in G/M). Also, we have Ker(γ) = M, so
Ker(γ) 6= N ′ and ϕ−1[N ′] 6= M. But {e} = {M} ( N ′ and so
M ( ϕ−1[N ′]. So ϕ−1[N ′] properly contains M. Since N ′ is a proper
subgroup of G/M, then it contains some but not all of the cosets of M.
Since the cosets of M partition G (Section II.10), then ϕ−1[N ′] contains
some but not all elements of G . That is, ϕ−1[N ′] is a proper subgroup of
G . Therefore, ϕ−1[N ′] is a nontrivial proper normal subgroup of G which
properly contains M. But this CONTRADICTS the maximality M. So no
such N ′ exists and G/M is simple, as claimed.
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Theorem 15.18

Theorem 15.18 (continued)

Proof (continued). Now let G/M be simple. ASSUME that M is not a
maximal normal subgroup and that there is a proper normal subgroup N of
G properly containing M (i.e., M ( N ( G ). Then by Theorem 15.16,
γ[N] is a normal subgroup of γ[G ] = G/M where γ is as defined above.
Now Ker(γ) = {M} (remember that M is the identity in G/M). Hence
γ[N] is a nontrivial normal subgroup of G/M. Now we show that γ[N] is a
proper subgroup of G/M. Recall that γ maps elements of G to cosets of
M. So the only way that γ[N] = G/M is if N contains an element of each
coset of M. But we assumed M ( N, and so if N contains an element of
each coset of M, then (since N is a group and so is closed under the
binary operation) N must contain all cosets of M—that is, M = G . But
this CONTRADICTS the choice of N as a proper subgroup of G .

Hence N
does not contain an element from each coset of M and γ[N] 6= G/M.
That is, γ[N] ( G/M. Therefore, γ[N] is a proper nontrivial subgroup of
G/M. But this contradicts the fact that G/M is simple. Therefore, no
such N exists and M is a maximal normal subgroup of G , as claimed.
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Theorem 15.20

Theorem 15.20

Theorem 15.20. Let G be a group. Then the set
C =

{
aba−1b−1 | a, b ∈ G

}
is a subgroup of G . Additionally, C is a

normal subgroup of G then G/N is abelian if and only if C ≤ N.

Proof. Since C is a subset of G , associativity of the binary operation is
inherited from G and G1 holds. Taking a = e, we see that aba−1be ∈ C ,
we see that aba−1b−1 = e ∈ C and G2 holds. If x ∈ C , then
x = aba−1b−1 and x−1 = bab−1a−1 ∈ C and G3 holds. Hence C is a
group, as claimed.

For normality, let x ∈ C and g ∈ G . Then x = cdc−1d−1 for some
c , d ∈ G . Hence

g−1xg = g−1
(
cdc−1d−1

)
g = g−1

(
cdc−1ed−1

)
g

= g−1cdc−1
(
gd1dg−1

)
d−1g since e = gd−1dg−1

=
[(

g−1c
)
d

(
g−1c

)−1
d−1

] [
dg−1d−1g

]
. . .
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Theorem 15.20

Theorem 15.20 (continued).

Proof (continued). . . .

g−1xg =
[(

g−1c
)
d

(
g−1c

)−1
d−1

] [
dg−1d−1g

]
∈ C

since
(
g−1c

)
d

(
g−1c

)−1
d−1,

so that dg−1d−1g ∈ C . So g−1xg ∈ C and C is a normal subgroup of G
by Theorem 14.13, as claimed.

Now let N be a normal subgroup of G (N / G ). Suppose G/n is abelian.
Then for all a, b ∈ G(
a−1b−1

)
N =

(
a−1N

) (
b−1N

)
=

(
b−1N

) (
a−1N

)
= b−1a−1N or(

aba−1b−1
)
N = N and so aba−1b−1 ∈ N and C ≤ N.

Let N be a normal subgroup of G . Suppose C ≤ N. Then for all a, b ∈ G
(aN) (bN) = (ab) N = ab

(
b−1a−1ba

)
N, since

b−1a−1ba ∈ C ⊆ N = baN = (bN) (aN), and so G/N is abelian, as
claimed.
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by Theorem 14.13, as claimed.

Now let N be a normal subgroup of G (N / G ). Suppose G/n is abelian.
Then for all a, b ∈ G(
a−1b−1

)
N =

(
a−1N

) (
b−1N

)
=

(
b−1N

) (
a−1N

)
= b−1a−1N or(

aba−1b−1
)
N = N and so aba−1b−1 ∈ N and C ≤ N.

Let N be a normal subgroup of G . Suppose C ≤ N. Then for all a, b ∈ G
(aN) (bN) = (ab) N = ab

(
b−1a−1ba

)
N, since

b−1a−1ba ∈ C ⊆ N = baN = (bN) (aN), and so G/N is abelian, as
claimed.
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