Introduction to Modern Algebra

Part IV. Rings and Fields IV.18. Rings and Fields

Table of contents

Theorem 18.8

Theorem 18.8. If *R* is a ring with additive identity 0, then for all $a, b \in R$ we have

1.
$$0a = a0 = 0$$
,
2. $a(-b) = (-a)b = -(ab)$, and
3. $(-a)(-b) = ab$.

Proof. First, let $a \in R$. Then a0 + a0 = a(0+), by R_3 , = a0 = 0 + 0a since 0 is the additive identity. Using left cancellation in $\langle R, + \rangle$, a0 = 0. Using R_3 and left cancellation 0a + 0a = (0 + 0)a = 0a = 0 + 0a and so 0a = 0. So (1) holds.

Theorem 18.8

Theorem 18.8. If *R* is a ring with additive identity 0, then for all $a, b \in R$ we have

1.
$$0a = a0 = 0$$
,
2. $a(-b) = (-a)b = -(ab)$, and
3. $(-a)(-b) = ab$.

Proof. First, let $a \in R$. Then a0 + a0 = a(0+), by R_3 , = a0 = 0 + 0a since 0 is the additive identity. Using left cancellation in $\langle R, + \rangle$, a0 = 0. Using R_3 and left cancellation 0a + 0a = (0+0)a = 0a = 0 + 0a and so 0a = 0. So (1) holds.

Theorem 18.8 (continued)

Theorem. 18.8. If *R* is a ring with additive identity 0, then for all $a, b \in R$ we have

1.
$$0a = a0 = 0$$
,
2. $a(-b) = (-a)b = -(ab)$, and
3. $(-a)(-b) = ab$.

Proof (continued). Second, let $a, b \in R$. By R_3 a(-b) + ab = a(-b + b) = a0 = 0 by (1). So ab is the additive inverse of a(-b): a(-b) = -(ab). Similarly, (-a)b + ab = (-a + a)b = 0b = 0and (-a)b = -(ab). So (2) holds.

Third let $a, b \in R$. Then by (2) (-a)(-b) = -(a(-b)) = -(-(ab)). That is, (-a)(-b) is the additive inverse of -(ab). But ab is also an additive inverse of -(ab) and since additive inverse are unique in $\langle R, + \rangle$ (Theorem 4.17), then (-a)(-b) = ab. So (3) holds.

Theorem 18.8 (continued)

Theorem. 18.8. If *R* is a ring with additive identity 0, then for all $a, b \in R$ we have

1.
$$0a = a0 = 0$$
,
2. $a(-b) = (-a)b = -(ab)$, and
3. $(-a)(-b) = ab$.

Proof (continued). Second, let $a, b \in R$. By R_3 a(-b) + ab = a(-b + b) = a0 = 0 by (1). So ab is the additive inverse of a(-b): a(-b) = -(ab). Similarly, (-a)b + ab = (-a + a)b = 0b = 0and (-a)b = -(ab). So (2) holds.

Third let $a, b \in R$. Then by (2) (-a)(-b) = -(a(-b)) = -(-(ab)). That is, (-a)(-b) is the additive inverse of -(ab). But ab is also an additive inverse of -(ab) and since additive inverse are unique in $\langle R, + \rangle$ (Theorem 4.17), then (-a)(-b) = ab. So (3) holds.

Example. Find the units of \mathbb{Z}_8 .

Solution. The units are: 1 since $1 \cdot 1 = 1$, 3 since $3 \cdot 3 = 9 \equiv 1 \pmod{8}$, 5 since $5 \cdot 5 = 25 \equiv 1 \pmod{8}$, and 7 since $7 \times 7 = 49 \equiv 1 \pmod{8}$.

Example. Find the units of \mathbb{Z}_8 .

Solution. The units are: 1 since $1 \cdot 1 = 1$, 3 since $3 \cdot 3 = 9 \equiv 1 \pmod{8}$, 5 since $5 \cdot 5 = 25 \equiv 1 \pmod{8}$, and 7 since $7 \times 7 = 49 \equiv 1 \pmod{8}$.

