Introduction to Modern Algebra

Part IV. Rings and Fields

IV.18. Rings and Fields

Table of contents

(1) Theorem 18.8
(2) Example

Theorem 18.8

Theorem 18.8. If R is a ring with additive identity 0 , then for all $a, b \in R$ we have

$$
\begin{aligned}
& \text { 1. } 0 a=a 0=0 \text {, } \\
& \text { 2. } a(-b)=(-a) b=-(a b) \text {, and } \\
& \text { 3. }(-a)(-b)=a b \text {. }
\end{aligned}
$$

Proof. First, let $a \in R$. Then $a 0+a 0=a(0+)$, by $R_{3},=a 0=0+0 a$ since 0 is the additive identity. Using left cancellation in $\langle R,+\rangle, a 0=0$. Using R_{3} and left cancellation $0 a+0 a=(0+0) a=0 a=0+0 a$ and so $0 a=0$. So (1) holds.

Theorem 18.8

Theorem 18.8. If R is a ring with additive identity 0 , then for all $a, b \in R$ we have

$$
\begin{aligned}
& \text { 1. } 0 a=a 0=0 \text {, } \\
& \text { 2. } a(-b)=(-a) b=-(a b) \text {, and } \\
& \text { 3. }(-a)(-b)=a b \text {. }
\end{aligned}
$$

Proof. First, let $a \in R$. Then $a 0+a 0=a(0+)$, by $R_{3},=a 0=0+0 a$ since 0 is the additive identity. Using left cancellation in $\langle R,+\rangle, a 0=0$. Using R_{3} and left cancellation $0 a+0 a=(0+0) a=0 a=0+0 a$ and so $0 a=0$. So (1) holds.

Theorem 18.8 (continued)

Theorem. 18.8. If R is a ring with additive identity 0 , then for all $a, b \in R$ we have

$$
\begin{aligned}
& \text { 1. } 0 a=a 0=0 \text {, } \\
& \text { 2. } a(-b)=(-a) b=-(a b) \text {, and } \\
& \text { 3. }(-a)(-b)=a b \text {. }
\end{aligned}
$$

Proof (continued). Second, let $a, b \in R$. By R_{3} $a(-b)+a b=a(-b+b)=a 0=0$ by (1). So $a b$ is the additive inverse of $a(-b): a(-b)=-(a b)$. Similarly, $(-a) b+a b=(-a+a) b=0 b=0$ and $(-a) b=-(a b)$. So (2) holds.

Third let $a, b \in R$. Then by $(2)(-a)(-b)=-(a(-b))=-(-(a b))$. That is, $(-a)(-b)$ is the additive inverse of $-(a b)$. But $a b$ is also an additive inverse of $-(a b)$ and since additive inverse are unique in $\langle R,+\rangle$ (Theorem 4.17), then $(-a)(-b)=a b$. So (3) holds.

Theorem 18.8 (continued)

Theorem. 18.8. If R is a ring with additive identity 0 , then for all $a, b \in R$ we have

$$
\begin{aligned}
& \text { 1. } 0 a=a 0=0 \text {, } \\
& \text { 2. } a(-b)=(-a) b=-(a b) \text {, and } \\
& \text { 3. }(-a)(-b)=a b \text {. }
\end{aligned}
$$

Proof (continued). Second, let $a, b \in R$. By R_{3} $a(-b)+a b=a(-b+b)=a 0=0$ by (1). So $a b$ is the additive inverse of $a(-b): a(-b)=-(a b)$. Similarly, $(-a) b+a b=(-a+a) b=0 b=0$ and $(-a) b=-(a b)$. So (2) holds.

Third let $a, b \in R$. Then by $(2)(-a)(-b)=-(a(-b))=-(-(a b))$. That is, $(-a)(-b)$ is the additive inverse of $-(a b)$. But $a b$ is also an additive inverse of $-(a b)$ and since additive inverse are unique in $\langle R,+\rangle$ (Theorem 4.17), then $(-a)(-b)=a b$. So (3) holds.

Example

Example. Find the units of \mathbb{Z}_{8}.

Solution. The units are: 1 since $1 \cdot 1=1,3$ since $3 \cdot 3=9 \equiv 1(\bmod 8)$, 5 since $5 \cdot 5=25 \equiv 1(\bmod 8)$, and 7 since $7 \times 7=49 \equiv 1(\bmod 8)$.

Example

Example. Find the units of \mathbb{Z}_{8}.

Solution. The units are: 1 since $1 \cdot 1=1,3$ since $3 \cdot 3=9 \equiv 1(\bmod 8)$, 5 since $5 \cdot 5=25 \equiv 1(\bmod 8)$, and 7 since $7 \times 7=49 \equiv 1(\bmod 8)$.

