Introduction to Modern Algebra

Part IV. Rings and Fields

IV.19. Integral Domains

Table of contents

(1) Theorem 19.3
(2) Theorem 19.5
(3) Theorem 19.9
(4) Theorem 19.11
(5) Corollary 19.12
(6) Theorem 19.15

Theorem 19.3

Theorem 19.3. In the ring \mathbb{Z}_{n}, the divisors of 0 are precisely the nonzero elements that are not relatively prime to n.

Proof. Suppose m is not relatively prime to n, say $\operatorname{gcd}(m, n)=d \neq 1$. Then $m(n / d)=(m / d) n \equiv 0(\bmod n)$ and so m is a divisor of 0 .

Theorem 19.3

Theorem 19.3. In the ring \mathbb{Z}_{n}, the divisors of 0 are precisely the nonzero elements that are not relatively prime to n.

Proof. Suppose m is not relatively prime to n, say $\operatorname{gcd}(m, n)=d \neq 1$. Then $m(n / d)=(m / d) n \equiv 0(\bmod n)$ and so m is a divisor of 0 .

Suppose m is relatively prime to n. If for $s \in \mathbb{Z}_{n}$ we have $m s \equiv 0(\bmod n)$, then $m s$ is a multiple of n or equivalently n divides this product $m s$ (as elements of \mathbb{Z}). With n relatively prime to m, it must be that n divides s and so $s \equiv 0(\bmod n)$ (this result is in my online Elementary Number Theory [MATH 3120] notes on Section 1. Integers; see Corollary 1.1). So $s=0$ in \mathbb{Z}_{n} and m is not a divisor of 0 .

Theorem 19.3

Theorem 19.3. In the ring \mathbb{Z}_{n}, the divisors of 0 are precisely the nonzero elements that are not relatively prime to n.

Proof. Suppose m is not relatively prime to n, say $\operatorname{gcd}(m, n)=d \neq 1$. Then $m(n / d)=(m / d) n \equiv 0(\bmod n)$ and so m is a divisor of 0 .

Suppose m is relatively prime to n. If for $s \in \mathbb{Z}_{n}$ we have $m s \equiv 0(\bmod n)$, then $m s$ is a multiple of n or equivalently n divides this product $m s$ (as elements of \mathbb{Z}). With n relatively prime to m, it must be that n divides s and so $s \equiv 0(\bmod n)$ (this result is in my online Elementary Number Theory [MATH 3120] notes on Section 1. Integers; see Corollary 1.1). So $s=0$ in \mathbb{Z}_{n} and m is not a divisor of 0 .

Theorem 19.5

Theorem. 19.5. The left cancellation law states that " $a b=a c$ with $a \neq 0$ implies $b=c$ ". The right cancellation law states that " $b a=c a$ with $a \neq 0$ implies $b=c$ ". The cancellation laws hold in a ring R if and only if R has no divisor of 0 .

Proof. Let R be a ring in which the cancellation laws hold and suppose $a b=0$ for some $a, b \in R$. If $a \neq 0$ then $a b=a 0$ implies $b=0$ by the left cancellation law. Similarly, if $b \neq 0$ then $a b=0 b$ implies $a=0$ by the right cancellation law. Since a, b are arbitrary elements of R, then R has no 0 divisors, as claimed.

Theorem 19.5

Theorem. 19.5. The left cancellation law states that " $a b=a c$ with $a \neq 0$ implies $b=c$ ". The right cancellation law states that " $b a=c a$ with $a \neq 0$ implies $b=c$ ". The cancellation laws hold in a ring R if and only if R has no divisor of 0 .

Proof. Let R be a ring in which the cancellation laws hold and suppose $a b=0$ for some $a, b \in R$. If $a \neq 0$ then $a b=a 0$ implies $b=0$ by the left cancellation law. Similarly, if $b \neq 0$ then $a b=0 b$ implies $a=0$ by the right cancellation law. Since a, b are arbitrary elements of R, then R has no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose $a b=a c$ with $a \neq 0$. Then $a b-a c=a(b-c)=0$. Since $a \neq 0$ and R has no divisors of 0 , it must be that $b-c=0$, or $b=c$. So the left cancellation law holds, as claimed.

Theorem 19.5

Theorem. 19.5. The left cancellation law states that " $a b=a c$ with $a \neq 0$ implies $b=c$ ". The right cancellation law states that " $b a=c a$ with $a \neq 0$ implies $b=c$ ". The cancellation laws hold in a ring R if and only if R has no divisor of 0 .

Proof. Let R be a ring in which the cancellation laws hold and suppose $a b=0$ for some $a, b \in R$. If $a \neq 0$ then $a b=a 0$ implies $b=0$ by the left cancellation law. Similarly, if $b \neq 0$ then $a b=0 b$ implies $a=0$ by the right cancellation law. Since a, b are arbitrary elements of R, then R has no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose $a b=a c$ with $a \neq 0$. Then $a b-a c=a(b-c)=0$. Since $a \neq 0$ and R has no divisors of 0 , it must be that $b-c=0$, or $b=c$. So the left cancellation law holds, as claimed.

Similarly, suppose $b a=c a$ with $a \neq 0$. Then $b a-c a=(b-c) a$ and
again since $a \neq 0$ and R has no divisors of 0 , it must be that $b-c=0$ or $b=c$. So the right cancellation law holds, as claimed.

Theorem 19.5

Theorem. 19.5. The left cancellation law states that " $a b=a c$ with $a \neq 0$ implies $b=c$ ". The right cancellation law states that " $b a=c a$ with $a \neq 0$ implies $b=c$ ". The cancellation laws hold in a ring R if and only if R has no divisor of 0 .

Proof. Let R be a ring in which the cancellation laws hold and suppose $a b=0$ for some $a, b \in R$. If $a \neq 0$ then $a b=a 0$ implies $b=0$ by the left cancellation law. Similarly, if $b \neq 0$ then $a b=0 b$ implies $a=0$ by the right cancellation law. Since a, b are arbitrary elements of R, then R has no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose $a b=a c$ with $a \neq 0$. Then $a b-a c=a(b-c)=0$. Since $a \neq 0$ and R has no divisors of 0 , it must be that $b-c=0$, or $b=c$. So the left cancellation law holds, as claimed.
Similarly, suppose $b a=c a$ with $a \neq 0$. Then $b a-c a=(b-c) a$ and again since $a \neq 0$ and R has no divisors of 0 , it must be that $b-c=0$ or $b=c$. So the right cancellation law holds, as claimed.

Theorem 19.9

Theorem 19.9. Every field F is an integral domain.

Proof. Recall that a field is a commutative divisor ring. So we only need to show that F has no divisor of 0 . Let $a, b \in F$ with $a \neq 0$ and $a b=0$. Then $a^{-1}(a b)=a^{-1} 0=0$ and so $0=a^{-1}(a b)=\left(a^{-1} a\right) b=e b=b$. So $b=0$. Since F is commutative in $\cdot, b a=0$ and $a \neq 0$ also implies $b=0$. So F has no 0 divisors and therefore is an integral domain, as claimed.

Theorem 19.9

Theorem 19.9. Every field F is an integral domain.

Proof. Recall that a field is a commutative divisor ring. So we only need to show that F has no divisor of 0 . Let $a, b \in F$ with $a \neq 0$ and $a b=0$. Then $a^{-1}(a b)=a^{-1} 0=0$ and so $0=a^{-1}(a b)=\left(a^{-1} a\right) b=e b=b$. So $b=0$. Since F is commutative in $\cdot, b a=0$ and $a \neq 0$ also implies $b=0$. So F has no 0 divisors and therefore is an integral domain, as claimed.

Theorem 19.11

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral domain is a limit. Let the elements of the integral domain D be $0,1, a_{1}, \ldots, a_{n}$. Let $a \in D, a \neq 0$, and consider $a 1, a a_{1}, \ldots, a a_{n}$. These elements of D are distinct since $a a_{i}=a a_{j}$ implies $a_{i}=a_{j}$ by the left cancellation law (Theorem 19.5).

Theorem 19.11

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral domain is a limit. Let the elements of the integral domain D be $0,1, a_{1}, \ldots, a_{n}$. Let $a \in D, a \neq 0$, and consider $a 1, a a_{1}, \ldots, a a_{n}$. These elements of D are distinct since $a a_{i}=a a_{j}$ implies $a_{i}=a_{j}$ by the left cancellation law (Theorem 19.5). Since D has no 0 divisors, none of $a 1, a a_{1}, \ldots, a a_{n}$ is 0 . So this list must include all nonzero elements of D. Hence one of these is 1 . That is $a a_{i}=1$ for some $0 \leq i \leq n$ (where we take $a_{0}=1$). Therefore, a has an inverse (namely a_{i}) and a is a unit. We now have that, D is a field, as claimed.

Theorem 19.11

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral domain is a limit. Let the elements of the integral domain D be $0,1, a_{1}, \ldots, a_{n}$. Let $a \in D, a \neq 0$, and consider $a 1, a a_{1}, \ldots, a a_{n}$. These elements of D are distinct since $a a_{i}=a a_{j}$ implies $a_{i}=a_{j}$ by the left cancellation law (Theorem 19.5). Since D has no 0 divisors, none of $a 1, a a_{1}, \ldots, a a_{n}$ is 0 . So this list must include all nonzero elements of D. Hence one of these is 1 . That is $a a_{i}=1$ for some $0 \leq i \leq n$ (where we take $a_{0}=1$). Therefore, a has an inverse (namely a_{i}) and a is a unit. We now have that, D is a field, as claimed.

Corollary 19.12

Corollary 19.12. If p is a prime, then \mathbb{Z}_{p} is a field.

Proof. For p prime, \mathbb{Z}_{p} is an integral domain by Corollary 19.4. So by Theorem $19.11, \mathbb{Z}_{p}$ is a field, as claimed.

Corollary 19.12

Corollary 19.12. If p is a prime, then \mathbb{Z}_{p} is a field.

Proof. For p prime, \mathbb{Z}_{p} is an integral domain by Corollary 19.4. So by Theorem 19.11, \mathbb{Z}_{p} is a field, as claimed.

Theorem 19.15

Theorem 19.15. Let R be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then R has characteristic 0 . If $n \cdot 1=0$ for some $n \in \mathbb{N}$, then the smallest such integer n is the characteristic of R.

Proof. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then we cannot have $n \cdot a=0$ for all $a \in R$ and some given $n \in \mathbb{N}$ (since the result does not ever hold for $a=1$). So R has characteristic 0 , as claimed.

Theorem 19.15

Theorem 19.15. Let R be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then R has characteristic 0 . If $n \cdot 1=0$ for some $n \in \mathbb{N}$, then the smallest such integer n is the characteristic of R.

Proof. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then we cannot have $n \cdot a=0$ for all $a \in R$ and some given $n \in \mathbb{N}$ (since the result does not ever hold for $a=1$). So R has characteristic 0 , as claimed.

Suppose that $n \in \mathbb{N}$ such that $n \cdot 1=0$ and n is the smallest such element of \mathbb{N} with this property. Let $a \in R$. Then

So R is of characteristic n (notice there is no smaller n for which $n \cdot a=0$ when $a=1$, so there is no small such n), as claimed.

Theorem 19.15

Theorem 19.15. Let R be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then R has characteristic 0 . If $n \cdot 1=0$ for some $n \in \mathbb{N}$, then the smallest such integer n is the characteristic of R.

Proof. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then we cannot have $n \cdot a=0$ for all $a \in R$ and some given $n \in \mathbb{N}$ (since the result does not ever hold for $a=1$). So R has characteristic 0 , as claimed.

Suppose that $n \in \mathbb{N}$ such that $n \cdot 1=0$ and n is the smallest such element of \mathbb{N} with this property. Let $a \in R$. Then

$$
n \cdot a=\underbrace{a+a+a+\cdots+a}_{n \text { times }}=a(\underbrace{1+1+\cdots+1}_{n \text { times }})=a(n \cdot 1)=a \cdot 0=0 .
$$

So R is of characteristic n (notice there is no smaller n for which $n \cdot a=0$ when $a=1$, so there is no small such n), as claimed.

