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Theorem 19.3

Theorem 19.3

Theorem 19.3. In the ring Zn, the divisors of 0 are precisely the nonzero
elements that are not relatively prime to n.

Proof. Suppose m is not relatively prime to n, say gcd (m, n) = d 6= 1.
Then m (n/d) = (m/d) n ≡ 0 (mod n) and so m is a divisor of 0.

Suppose m is relatively prime to n. If for s ∈ Zn we have ms ≡ 0 (mod n),
then ms is a multiple of n or equivalently n divides this product ms (as
elements of Z). With n relatively prime to m, it must be that n divides s
and so s ≡ 0 (mod n) (this result is in my online Elementary Number
Theory [MATH 3120] notes on Section 1. Integers; see Corollary 1.1). So
s = 0 in Zn and m is not a divisor of 0.
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Theorem 19.5

Theorem. 19.5. The left cancellation law states that “ab = ac with
a 6= 0 implies b = c”. The right cancellation law states that “ba = ca with
a 6= 0 implies b = c”. The cancellation laws hold in a ring R if and only if
R has no divisor of 0.

Proof. Let R be a ring in which the cancellation laws hold and suppose
ab = 0 for some a, b ∈ R. If a 6= 0 then ab = a0 implies b = 0 by the left
cancellation law. Similarly, if b 6= 0 then ab = 0b implies a = 0 by the
right cancellation law. Since a, b are arbitrary elements of R, then R has
no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose ab = ac with a 6= 0. Then
ab − ac = a (b − c) = 0. Since a 6= 0 and R has no divisors of 0, it must
be that b− c = 0, or b = c . So the left cancellation law holds, as claimed.

Similarly, suppose ba = ca with a 6= 0. Then ba− ca = (b − c) a and
again since a 6= 0 and R has no divisors of 0, it must be that b − c = 0 or
b = c . So the right cancellation law holds, as claimed.
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Theorem 19.9

Theorem 19.9. Every field F is an integral domain.

Proof. Recall that a field is a commutative divisor ring. So we only need
to show that F has no divisor of 0. Let a, b ∈ F with a 6= 0 and ab = 0.
Then a−1 (ab) = a−10 = 0 and so 0 = a−1 (ab) =

(
a−1a

)
b = eb = b. So

b = 0. Since F is commutative in ·, ba = 0 and a 6= 0 also implies b = 0.
So F has no 0 divisors and therefore is an integral domain, as claimed.

() Introduction to Modern Algebra July 14, 2023 5 / 8



Theorem 19.9

Theorem 19.9

Theorem 19.9. Every field F is an integral domain.

Proof. Recall that a field is a commutative divisor ring. So we only need
to show that F has no divisor of 0. Let a, b ∈ F with a 6= 0 and ab = 0.
Then a−1 (ab) = a−10 = 0 and so 0 = a−1 (ab) =

(
a−1a

)
b = eb = b. So

b = 0. Since F is commutative in ·, ba = 0 and a 6= 0 also implies b = 0.
So F has no 0 divisors and therefore is an integral domain, as claimed.

() Introduction to Modern Algebra July 14, 2023 5 / 8



Theorem 19.11

Theorem 19.11

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral
domain is a limit. Let the elements of the integral domain D be
0, 1, a1, . . . , an. Let a ∈ D, a 6= 0, and consider a1, aa1, . . . , aan. These
elements of D are distinct since aai = aaj implies ai = aj by the left
cancellation law (Theorem 19.5).

Since D has no 0 divisors, none of
a1, aa1, . . . , aan is 0. So this list must include all nonzero elements of D.
Hence one of these is 1. That is aai = 1 for some 0 ≤ i ≤ n (where we
take a0 = 1). Therefore, a has an inverse (namely ai ) and a is a unit. We
now have that, D is a field, as claimed.
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Corollary 19.12

Corollary 19.12

Corollary 19.12. If p is a prime, then Zp is a field.

Proof. For p prime, Zp is an integral domain by Corollary 19.4. So by
Theorem 19.11, Zp is a field, as claimed.

() Introduction to Modern Algebra July 14, 2023 7 / 8



Corollary 19.12

Corollary 19.12

Corollary 19.12. If p is a prime, then Zp is a field.

Proof. For p prime, Zp is an integral domain by Corollary 19.4. So by
Theorem 19.11, Zp is a field, as claimed.

() Introduction to Modern Algebra July 14, 2023 7 / 8



Theorem 19.15

Theorem 19.15

Theorem 19.15. Let R be a ring with unity. If n · 1 6= 0 for all n ∈ N,
then R has characteristic 0. If n · 1 = 0 for some n ∈ N, then the smallest
such integer n is the characteristic of R.

Proof. If n · 1 6= 0 for all n ∈ N, then we cannot have n · a = 0 for all
a ∈ R and some given n ∈ N (since the result does not ever hold for
a = 1). So R has characteristic 0, as claimed.

Suppose that n ∈ N such that n · 1 = 0 and n is the smallest such element
of N with this property. Let a ∈ R. Then

n · a = a + a + a + · · ·+ a︸ ︷︷ ︸
n times

= a(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

) = a (n · 1) = a · 0 = 0.

So R is of characteristic n (notice there is no smaller n for which n · a = 0
when a = 1, so there is no small such n), as claimed.

() Introduction to Modern Algebra July 14, 2023 8 / 8



Theorem 19.15

Theorem 19.15

Theorem 19.15. Let R be a ring with unity. If n · 1 6= 0 for all n ∈ N,
then R has characteristic 0. If n · 1 = 0 for some n ∈ N, then the smallest
such integer n is the characteristic of R.

Proof. If n · 1 6= 0 for all n ∈ N, then we cannot have n · a = 0 for all
a ∈ R and some given n ∈ N (since the result does not ever hold for
a = 1). So R has characteristic 0, as claimed.

Suppose that n ∈ N such that n · 1 = 0 and n is the smallest such element
of N with this property. Let a ∈ R. Then

n · a = a + a + a + · · ·+ a︸ ︷︷ ︸
n times

= a(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

) = a (n · 1) = a · 0 = 0.

So R is of characteristic n (notice there is no smaller n for which n · a = 0
when a = 1, so there is no small such n), as claimed.

() Introduction to Modern Algebra July 14, 2023 8 / 8



Theorem 19.15

Theorem 19.15

Theorem 19.15. Let R be a ring with unity. If n · 1 6= 0 for all n ∈ N,
then R has characteristic 0. If n · 1 = 0 for some n ∈ N, then the smallest
such integer n is the characteristic of R.

Proof. If n · 1 6= 0 for all n ∈ N, then we cannot have n · a = 0 for all
a ∈ R and some given n ∈ N (since the result does not ever hold for
a = 1). So R has characteristic 0, as claimed.

Suppose that n ∈ N such that n · 1 = 0 and n is the smallest such element
of N with this property. Let a ∈ R. Then

n · a = a + a + a + · · ·+ a︸ ︷︷ ︸
n times

= a(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

) = a (n · 1) = a · 0 = 0.

So R is of characteristic n (notice there is no smaller n for which n · a = 0
when a = 1, so there is no small such n), as claimed.

() Introduction to Modern Algebra July 14, 2023 8 / 8


	Theorem 19.3
	Theorem 19.5
	Theorem 19.9
	Theorem 19.11
	Corollary 19.12
	Theorem 19.15

