Introduction to Modern Algebra

Part IV. Rings and Fields IV.19. Integral Domains

Table of contents

- Theorem 19.3
- 2 Theorem 19.5
- 3 Theorem 19.9
- 4 Theorem 19.11
- 5 Corollary 19.12
- 6 Theorem 19.15

Theorem 19.3. In the ring \mathbb{Z}_n , the divisors of 0 are precisely the nonzero elements that are not relatively prime to n.

Proof. Suppose *m* is not relatively prime to *n*, say gcd $(m, n) = d \neq 1$. Then $m(n/d) = (m/d) n \equiv 0 \pmod{n}$ and so *m* is a divisor of 0. **Theorem 19.3.** In the ring \mathbb{Z}_n , the divisors of 0 are precisely the nonzero elements that are not relatively prime to n.

Proof. Suppose *m* is not relatively prime to *n*, say gcd $(m, n) = d \neq 1$. Then $m(n/d) = (m/d) n \equiv 0 \pmod{n}$ and so *m* is a divisor of 0.

Suppose *m* is relatively prime to *n*. If for $s \in \mathbb{Z}_n$ we have $ms \equiv 0 \pmod{n}$, then *ms* is a multiple of *n* or equivalently *n* divides this product *ms* (as elements of \mathbb{Z}). With *n* relatively prime to *m*, it must be that *n* divides *s* and so $s \equiv 0 \pmod{n}$ (this result is in my online Elementary Number Theory [MATH 3120] notes on Section 1. Integers; see Corollary 1.1). So s = 0 in \mathbb{Z}_n and *m* is not a divisor of 0.

Theorem 19.3. In the ring \mathbb{Z}_n , the divisors of 0 are precisely the nonzero elements that are not relatively prime to *n*.

Proof. Suppose *m* is not relatively prime to *n*, say gcd $(m, n) = d \neq 1$. Then $m(n/d) = (m/d) n \equiv 0 \pmod{n}$ and so *m* is a divisor of 0.

Suppose *m* is relatively prime to *n*. If for $s \in \mathbb{Z}_n$ we have $ms \equiv 0 \pmod{n}$, then *ms* is a multiple of *n* or equivalently *n* divides this product *ms* (as elements of \mathbb{Z}). With *n* relatively prime to *m*, it must be that *n* divides *s* and so $s \equiv 0 \pmod{n}$ (this result is in my online Elementary Number Theory [MATH 3120] notes on Section 1. Integers; see Corollary 1.1). So s = 0 in \mathbb{Z}_n and *m* is not a divisor of 0.

Theorem. 19.5. The left cancellation law states that "ab = ac with $a \neq 0$ implies b = c". The right cancellation law states that "ba = ca with $a \neq 0$ implies b = c". The cancellation laws hold in a ring R if and only if R has no divisor of 0.

Proof. Let *R* be a ring in which the cancellation laws hold and suppose ab = 0 for some $a, b \in R$. If $a \neq 0$ then ab = a0 implies b = 0 by the left cancellation law. Similarly, if $b \neq 0$ then ab = 0b implies a = 0 by the right cancellation law. Since a, b are arbitrary elements of *R*, then *R* has no 0 divisors, as claimed.

Theorem. 19.5. The left cancellation law states that "ab = ac with $a \neq 0$ implies b = c". The right cancellation law states that "ba = ca with $a \neq 0$ implies b = c". The cancellation laws hold in a ring R if and only if R has no divisor of 0.

Proof. Let *R* be a ring in which the cancellation laws hold and suppose ab = 0 for some $a, b \in R$. If $a \neq 0$ then ab = a0 implies b = 0 by the left cancellation law. Similarly, if $b \neq 0$ then ab = 0b implies a = 0 by the right cancellation law. Since a, b are arbitrary elements of *R*, then *R* has no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose ab = ac with $a \neq 0$. Then ab - ac = a(b - c) = 0. Since $a \neq 0$ and R has no divisors of 0, it must be that b - c = 0, or b = c. So the left cancellation law holds, as claimed.

Theorem. 19.5. The left cancellation law states that "ab = ac with $a \neq 0$ implies b = c". The right cancellation law states that "ba = ca with $a \neq 0$ implies b = c". The cancellation laws hold in a ring R if and only if R has no divisor of 0.

Proof. Let *R* be a ring in which the cancellation laws hold and suppose ab = 0 for some $a, b \in R$. If $a \neq 0$ then ab = a0 implies b = 0 by the left cancellation law. Similarly, if $b \neq 0$ then ab = 0b implies a = 0 by the right cancellation law. Since a, b are arbitrary elements of *R*, then *R* has no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose ab = ac with $a \neq 0$. Then ab - ac = a(b - c) = 0. Since $a \neq 0$ and R has no divisors of 0, it must be that b - c = 0, or b = c. So the left cancellation law holds, as claimed.

Similarly, suppose ba = ca with $a \neq 0$. Then ba - ca = (b - c) a and again since $a \neq 0$ and R has no divisors of 0, it must be that b - c = 0 or b = c. So the right cancellation law holds, as claimed.

Theorem. 19.5. The left cancellation law states that "ab = ac with $a \neq 0$ implies b = c". The right cancellation law states that "ba = ca with $a \neq 0$ implies b = c". The cancellation laws hold in a ring R if and only if R has no divisor of 0.

Proof. Let *R* be a ring in which the cancellation laws hold and suppose ab = 0 for some $a, b \in R$. If $a \neq 0$ then ab = a0 implies b = 0 by the left cancellation law. Similarly, if $b \neq 0$ then ab = 0b implies a = 0 by the right cancellation law. Since a, b are arbitrary elements of *R*, then *R* has no 0 divisors, as claimed.

Now suppose R has no 0 divisors and suppose ab = ac with $a \neq 0$. Then ab - ac = a(b - c) = 0. Since $a \neq 0$ and R has no divisors of 0, it must be that b - c = 0, or b = c. So the left cancellation law holds, as claimed. Similarly, suppose ba = ca with $a \neq 0$. Then ba - ca = (b - c)a and again since $a \neq 0$ and R has no divisors of 0, it must be that b - c = 0 or b = c. So the right cancellation law holds, as claimed.

Theorem 19.9. Every field *F* is an integral domain.

Proof. Recall that a field is a commutative divisor ring. So we only need to show that F has no divisor of 0. Let $a, b \in F$ with $a \neq 0$ and ab = 0. Then $a^{-1}(ab) = a^{-1}0 = 0$ and so $0 = a^{-1}(ab) = (a^{-1}a)b = eb = b$. So b = 0. Since F is commutative in \cdot , ba = 0 and $a \neq 0$ also implies b = 0. So F has no 0 divisors and therefore is an integral domain, as claimed. **Theorem 19.9.** Every field *F* is an integral domain.

Proof. Recall that a field is a commutative divisor ring. So we only need to show that F has no divisor of 0. Let $a, b \in F$ with $a \neq 0$ and ab = 0. Then $a^{-1}(ab) = a^{-1}0 = 0$ and so $0 = a^{-1}(ab) = (a^{-1}a)b = eb = b$. So b = 0. Since F is commutative in \cdot , ba = 0 and $a \neq 0$ also implies b = 0. So F has no 0 divisors and therefore is an integral domain, as claimed.

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral domain is a limit. Let the elements of the integral domain D be $0, 1, a_1, \ldots, a_n$. Let $a \in D$, $a \neq 0$, and consider $a1, aa_1, \ldots, aa_n$. These elements of D are distinct since $aa_i = aa_j$ implies $a_i = a_j$ by the left cancellation law (Theorem 19.5).

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral domain is a limit. Let the elements of the integral domain D be $0, 1, a_1, \ldots, a_n$. Let $a \in D$, $a \neq 0$, and consider $a1, aa_1, \ldots, aa_n$. These elements of D are distinct since $aa_i = aa_j$ implies $a_i = a_j$ by the left cancellation law (Theorem 19.5). Since D has no 0 divisors, none of $a1, aa_1, \ldots, aa_n$ is 0. So this list must include all nonzero elements of D. Hence one of these is 1. That is $aa_i = 1$ for some $0 \le i \le n$ (where we take $a_0 = 1$). Therefore, a has an inverse (namely a_i) and a is a unit. We now have that, D is a field, as claimed.

Theorem 19.11. Every finite integral domain is a field.

Proof. We need only show that each nonzero element of a finite integral domain is a limit. Let the elements of the integral domain D be $0, 1, a_1, \ldots, a_n$. Let $a \in D$, $a \neq 0$, and consider $a1, aa_1, \ldots, aa_n$. These elements of D are distinct since $aa_i = aa_j$ implies $a_i = a_j$ by the left cancellation law (Theorem 19.5). Since D has no 0 divisors, none of $a1, aa_1, \ldots, aa_n$ is 0. So this list must include all nonzero elements of D. Hence one of these is 1. That is $aa_i = 1$ for some $0 \le i \le n$ (where we take $a_0 = 1$). Therefore, a has an inverse (namely a_i) and a is a unit. We now have that, D is a field, as claimed.

Corollary 19.12

Corollary 19.12. If p is a prime, then \mathbb{Z}_p is a field.

Proof. For *p* prime, \mathbb{Z}_p is an integral domain by Corollary 19.4. So by Theorem 19.11, \mathbb{Z}_p is a field, as claimed.

Corollary 19.12. If p is a prime, then \mathbb{Z}_p is a field.

Proof. For *p* prime, \mathbb{Z}_p is an integral domain by Corollary 19.4. So by Theorem 19.11, \mathbb{Z}_p is a field, as claimed.

Theorem 19.15. Let *R* be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then *R* has characteristic 0. If $n \cdot 1 = 0$ for some $n \in \mathbb{N}$, then the smallest such integer *n* is the characteristic of *R*.

Proof. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then we cannot have $n \cdot a = 0$ for all $a \in R$ and some given $n \in \mathbb{N}$ (since the result does not ever hold for a = 1). So R has characteristic 0, as claimed.

Theorem 19.15. Let *R* be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then *R* has characteristic 0. If $n \cdot 1 = 0$ for some $n \in \mathbb{N}$, then the smallest such integer *n* is the characteristic of *R*.

Proof. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then we cannot have $n \cdot a = 0$ for all $a \in R$ and some given $n \in \mathbb{N}$ (since the result does not ever hold for a = 1). So R has characteristic 0, as claimed.

Suppose that $n \in \mathbb{N}$ such that $n \cdot 1 = 0$ and n is the smallest such element of \mathbb{N} with this property. Let $a \in R$. Then

$$n \cdot a = \underbrace{a + a + a + \dots + a}_{n \text{ times}} = a(\underbrace{1 + 1 + \dots + 1}_{n \text{ times}}) = a(n \cdot 1) = a \cdot 0 = 0.$$

So *R* is of characteristic *n* (notice there is no smaller *n* for which $n \cdot a = 0$ when a = 1, so there is no small such *n*), as claimed.

Theorem 19.15. Let *R* be a ring with unity. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then *R* has characteristic 0. If $n \cdot 1 = 0$ for some $n \in \mathbb{N}$, then the smallest such integer *n* is the characteristic of *R*.

Proof. If $n \cdot 1 \neq 0$ for all $n \in \mathbb{N}$, then we cannot have $n \cdot a = 0$ for all $a \in R$ and some given $n \in \mathbb{N}$ (since the result does not ever hold for a = 1). So R has characteristic 0, as claimed.

Suppose that $n \in \mathbb{N}$ such that $n \cdot 1 = 0$ and n is the smallest such element of \mathbb{N} with this property. Let $a \in R$. Then

$$n \cdot a = \underbrace{a + a + a + \dots + a}_{n \text{ times}} = a(\underbrace{1 + 1 + \dots + 1}_{n \text{ times}}) = a(n \cdot 1) = a \cdot 0 = 0.$$

So *R* is of characteristic *n* (notice there is no smaller *n* for which $n \cdot a = 0$ when a = 1, so there is no small such *n*), as claimed.