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Part IV. Rings and Fields
IV.20. Fermat's and Euler's Theorem

7
/ \
/
A First Course In

Abstract Afgebra

Introduction to Modern Algebra March 1, 2024 1/7

Theorem 20.6.

Theorem. 20.6. The set G, of nonzero elements of Z, that are not 0
divisions forms a group under multiplication modulo n.

Proof. First, we show G, is closed under multiplication. Let a,b € G,.
Suppose ab € G,. Then there is some ¢ # 0 in Z, such that (ab)c =0
since we have assumed ab is not a division of 0. Now (ab) ¢ = 0 implies
that a(bc) = 0. Since b € G, and ¢ # 0, then bc # 0. But with bc # 0
and a(bc) =0, we must have a a 0 divisor (i.e., a € G,) and G, is closed
under multiplication.

Now to show that G, is a group. Associativity of multiplication modulo n
is inherited from Z, (G1). Since 1 is not a 0 division, then 1 € G, (G). If
a € Gp, then let 1,a1,a,...,a, be the elements of G,. As in the proof by
Theorem 19.11, the elements of al, aay, aa», ..., aa, are all different, for if
aa; = aaj then a(a; — aj) = 0 and since a € G, then a; —a; =0 or

aj = aj. So aaj = 1 for some 0 < j < n (where ag = 1), and so a is not a
0 divisor then of coarse the inverse of a is not a 0 divisor. O
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Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If a € Z and p is a prime not dividing a, then p divides
aP~! — 1. Thatis, a1 = 1 (mod p) for a #Z 0 (mod p).

Proof. By Corollary, 1,2,3,...,p — 1 forms a group of order p — 1 under
multiplication modulo p. Since the order of any element in a group divides
the order of the group (Theorem 10.12), for b # 0 and b € Z,, we have
bP~1 =1in Zp, or bP~1 =1 (mod p). Now Z,, is isomorphic to Z/pZ
that both as additive and multiplicative groups (recall that the elements of
7./ pZ are the cosets of the form a+ pZ). So for a€ Z, a € 0 + pZ, we
have a?~! € 1 + pZ. That is, a?~ = 1 (mod p). O
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Theorem 20.8. Euler's Theorem

Theorem 20.8. Euler's Theorem

Theorem. 20.8. If ais an integer relatively prime to n, then a#(") — 1 is
divisible by n. That is, a#(") = 1 (mod n).

Proof. For integer a relatively prime to n there exists k € Z such that

0 < a+ kn < n. Notice that b = a+ kn is relatively prime to nZ (if n and
b have a common factor, then the factor would have to divide a but then
a and n would not be relatively prime). In other words, the coset a+ nZ of
nZ contains an integer b < n and relatively prime to n. Since a and b
from the same coset, then a = b(mod n) and so a#(") = b¥(") (mod ). By
Theorem 19.3, G, consists of the elements of Z, which are relatively prime
to n and so the order of G, is ¢ (n). Also, b € G,. Now b generates a
subgroup (b) of G, of some order m which divides ¢ (n) (the order of G,)
by Lagrange’s Theorem. Now b™ = 1(mod n) (see the proof of Case Il of
Theorem 6.10) and so b#(" =1 (mod n). Therefore

a#(") = 1 (mod n). O
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Theorem 20.10.

Theorem 20.10.

Theorem.20.10. Let m be a positive integer and let a € Z,, be relatively
prime to m. For each b € Z,,, the equation ax = b has a unique solution
inZpm.

proof (continued). By Theorem 20.6, a is a unit in Z, (since G, is a
multiplicative group and so a has a multiplicative inverse, a=* € Z,). So
ax = b implies a tax = a~'b or x = a~'b and this solutions is unique by
the implication (as a result of the first that multiplication is the binary
operation in Gp). O

Introduction to Modern Algebra March 1, 2024 6/7

Theorem 20.12.

Theorem 20.12.

Theorem. 20.12. Let m be a natural number and let a, b € Z,,. Let

d = gcd (a, m). The equation ax = b has a solution in Z,, if and only if d
divides b. When d divides b, the equation has exactly d solutions in Z,.
Proof. First, suppose s € Z,, in a solution of ax = b. Then

as — b= gm = 0(mod m) for some q € Z. Since d divides a and m, it
must also divide b. So if ax = b has a solution then d divides b.

Now suppose d divides b. Let a = a;d, b= bid, and m = m1d. Then the
equation as — b = gm can be written as d (a1s — b1) = dgmy or

ais — by = gmy. So as — b is a multiple of m if and only if a;s — by is a
multiple of my. So the solutions s of ax = b(mod m) are precisely the
elements that satisfy a;jx = by (mod my). Since a; and m; are relatively
prime (by the choice of d), then there is one solution s to

aix = by (mod my) in Z,, by Theorem 20.10. The elements of Z,, which
reduce to s modulo m; ( and hence are solutions to ax = b( mod m) are

s,s+my,s+2my,...,s+ (d — 1) my. These are the solutions to
ax = b(mod m) and therefore there are d solutions. O
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