Introduction to Modern Algebra

Part IV. Rings and Fields
IV.20. Fermat's and Euler's Theorem

Table of contents

(1) Theorem 20.1. Little Theorem of Fermat
(2) Theorem 20.6.
(3) Theorem 20.8. Euler's Theorem
(4) Theorem 20.10.
(5) Theorem 20.12.

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1}-1$. That is, $a^{p-1} \equiv 1(\bmod p)$ for $a \not \equiv 0(\bmod p)$.

Proof. By Corollary, $1,2,3, \ldots, p-1$ forms a group of order $p-1$ under multiplication modulo p. Since the order of any element in a group divides the order of the group (Theorem 10.12), for $b \neq 0$ and $b \in \mathbb{Z}_{p}$, we have $b^{p-1}=1$ in \mathbb{Z}_{p}, or $b^{p-1} \equiv 1(\bmod p)$.

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1}-1$. That is, $a^{p-1} \equiv 1(\bmod p)$ for $a \not \equiv 0(\bmod p)$.

Proof. By Corollary, $1,2,3, \ldots, p-1$ forms a group of order $p-1$ under multiplication modulo p. Since the order of any element in a group divides the order of the group (Theorem 10.12), for $b \neq 0$ and $b \in \mathbb{Z}_{p}$, we have $b^{p-1}=1$ in \mathbb{Z}_{p}, or $b^{p-1} \equiv 1(\bmod p)$. Now \mathbb{Z}_{p} is isomorphic to $\mathbb{Z} / p \mathbb{Z}$ that both as additive and multiplicative groups (recall that the elements of $\mathbb{Z} / p \mathbb{Z}$ are the cosets of the form $a+p \mathbb{Z})$. So for $a \in \mathbb{Z}, a \in 0+p \mathbb{Z}$, we have $a^{p-1} \in 1+p \mathbb{Z}$. That is, $a^{p-1} \equiv 1(\bmod p)$.

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1}-1$. That is, $a^{p-1} \equiv 1(\bmod p)$ for $a \not \equiv 0(\bmod p)$.

Proof. By Corollary, $1,2,3, \ldots, p-1$ forms a group of order $p-1$ under multiplication modulo p. Since the order of any element in a group divides the order of the group (Theorem 10.12), for $b \neq 0$ and $b \in \mathbb{Z}_{p}$, we have $b^{p-1}=1$ in \mathbb{Z}_{p}, or $b^{p-1} \equiv 1(\bmod p)$. Now \mathbb{Z}_{p} is isomorphic to $\mathbb{Z} / p \mathbb{Z}$ that both as additive and multiplicative groups (recall that the elements of $\mathbb{Z} / p \mathbb{Z}$ are the cosets of the form $a+p \mathbb{Z})$. So for $a \in \mathbb{Z}, a \in 0+p \mathbb{Z}$, we have $a^{p-1} \in 1+p \mathbb{Z}$. That is, $a^{p-1} \equiv 1(\bmod p)$.

Theorem 20.6.

Theorem. 20.6. The set G_{n} of nonzero elements of \mathbb{Z}_{n} that are not 0 divisions forms a group under multiplication modulo n. Proof. First, we show G_{n} is closed under multiplication. Let $a, b \in G_{n}$. Suppose $a b \notin G_{n}$. Then there is some $c \neq 0$ in \mathbb{Z}_{n} such that $(a b) c=0$ since we have assumed $a b$ is not a division of 0 . Now $(a b) c=0$ implies that $a(b c)=0$. Since $b \in G_{n}$ and $c \neq 0$, then $b c \neq 0$. But with $b c \neq 0$ and $a(b c)=0$, we must have a a divisor (i.e., $a \in G_{n}$) and G_{n} is closed under multiplication.

Theorem 20.6.

Theorem. 20.6. The set G_{n} of nonzero elements of \mathbb{Z}_{n} that are not 0 divisions forms a group under multiplication modulo n.
Proof. First, we show G_{n} is closed under multiplication. Let $a, b \in G_{n}$. Suppose $a b \notin G_{n}$. Then there is some $c \neq 0$ in \mathbb{Z}_{n} such that $(a b) c=0$ since we have assumed $a b$ is not a division of 0 . Now $(a b) c=0$ implies that $a(b c)=0$. Since $b \in G_{n}$ and $c \neq 0$, then $b c \neq 0$. But with $b c \neq 0$ and $a(b c)=0$, we must have a a divisor (i.e., $a \in G_{n}$) and G_{n} is closed under multiplication.
Now to show that G_{n} is a group. Associativity of multiplication modulo n is inherited from $\mathbb{Z}_{n}\left(G_{1}\right)$. Since 1 is not a 0 division, then $1 \in G_{n}\left(G_{2}\right)$. If $a \in G_{n}$, then let $1, a_{1}, a_{2}, \ldots, a_{r}$ be the elements of G_{n}. As in the proof by Theorem 19.11, the elements of $a 1, a a_{1}, a a_{2}, \ldots, a a_{r}$ are all different, for if $a a_{i}=a a_{j}$ then $a\left(a_{i}-a_{j}\right)=0$ and since $a \in G_{n}$, then $a_{i}-a_{j}=0$ or $a_{i}=a_{j}$.

Theorem 20.6.

Theorem. 20.6. The set G_{n} of nonzero elements of \mathbb{Z}_{n} that are not 0 divisions forms a group under multiplication modulo n.
Proof. First, we show G_{n} is closed under multiplication. Let $a, b \in G_{n}$. Suppose $a b \notin G_{n}$. Then there is some $c \neq 0$ in \mathbb{Z}_{n} such that $(a b) c=0$ since we have assumed $a b$ is not a division of 0 . Now $(a b) c=0$ implies that $a(b c)=0$. Since $b \in G_{n}$ and $c \neq 0$, then $b c \neq 0$. But with $b c \neq 0$ and $a(b c)=0$, we must have a a 0 divisor (i.e., $a \in G_{n}$) and G_{n} is closed under multiplication.
Now to show that G_{n} is a group. Associativity of multiplication modulo n is inherited from $\mathbb{Z}_{n}\left(G_{1}\right)$. Since 1 is not a 0 division, then $1 \in G_{n}\left(G_{2}\right)$. If $a \in G_{n}$, then let $1, a_{1}, a_{2}, \ldots, a_{r}$ be the elements of G_{n}. As in the proof by Theorem 19.11, the elements of $a 1, a a_{1}, a a_{2}, \ldots, a a_{r}$ are all different, for if $a a_{i}=a a_{j}$ then $a\left(a_{i}-a_{j}\right)=0$ and since $a \in G_{n}$, then $a_{i}-a_{j}=0$ or $a_{i}=a_{j}$. So $a a_{j}=1$ for some $0 \leq j \leq n\left(\right.$ where $\left.a_{0}=1\right)$, and so a is not a

Theorem 20.6.

Theorem. 20.6. The set G_{n} of nonzero elements of \mathbb{Z}_{n} that are not 0 divisions forms a group under multiplication modulo n.
Proof. First, we show G_{n} is closed under multiplication. Let $a, b \in G_{n}$. Suppose $a b \notin G_{n}$. Then there is some $c \neq 0$ in \mathbb{Z}_{n} such that $(a b) c=0$ since we have assumed $a b$ is not a division of 0 . Now $(a b) c=0$ implies that $a(b c)=0$. Since $b \in G_{n}$ and $c \neq 0$, then $b c \neq 0$. But with $b c \neq 0$ and $a(b c)=0$, we must have a a 0 divisor (i.e., $a \in G_{n}$) and G_{n} is closed under multiplication.
Now to show that G_{n} is a group. Associativity of multiplication modulo n is inherited from $\mathbb{Z}_{n}\left(G_{1}\right)$. Since 1 is not a 0 division, then $1 \in G_{n}\left(G_{2}\right)$. If $a \in G_{n}$, then let $1, a_{1}, a_{2}, \ldots, a_{r}$ be the elements of G_{n}. As in the proof by Theorem 19.11, the elements of $a 1, a a_{1}, a a_{2}, \ldots, a a_{r}$ are all different, for if $a a_{i}=a a_{j}$ then $a\left(a_{i}-a_{j}\right)=0$ and since $a \in G_{n}$, then $a_{i}-a_{j}=0$ or $a_{i}=a_{j}$. So $a a_{j}=1$ for some $0 \leq j \leq n\left(w h e r e ~ a_{0}=1\right)$, and so a is not a 0 divisor then of coarse the inverse of a is not a 0 divisor.

Theorem 20.8. Euler's Theorem

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)}-1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1(\bmod n)$.

Proof. For integer a relatively prime to n there exists $k \in \mathbb{Z}$ such that $0<a+k n<n$. Notice that $b=a+k n$ is relatively prime to $n \mathbb{Z}$ (if n and b have a common factor, then the factor would have to divide a but then a and n would not be relatively prime).

Theorem 20.8. Euler's Theorem

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)}-1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1(\bmod n)$.

Proof. For integer a relatively prime to n there exists $k \in \mathbb{Z}$ such that $0<a+k n<n$. Notice that $b=a+k n$ is relatively prime to $n \mathbb{Z}$ (if n and b have a common factor, then the factor would have to divide a but then a and n would not be relatively prime). In other words, the coset $a+n \mathbb{Z}$ of $n \mathbb{Z}$ contains an integer $b<n$ and relatively prime to n. Since a and b from the same coset, then $a \equiv b(\bmod n)$ and so $a^{\varphi(n)} \equiv b^{\varphi(n)}(\bmod)$.

Theorem 20.8. Euler's Theorem

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)}-1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1(\bmod n)$.

Proof. For integer a relatively prime to n there exists $k \in \mathbb{Z}$ such that $0<a+k n<n$. Notice that $b=a+k n$ is relatively prime to $n \mathbb{Z}$ (if n and b have a common factor, then the factor would have to divide a but then a and n would not be relatively prime). In other words, the coset $a+n \mathbb{Z}$ of $n \mathbb{Z}$ contains an integer $b<n$ and relatively prime to n. Since a and b from the same coset, then $a \equiv b(\bmod n)$ and so $a^{\varphi(n)} \equiv b^{\varphi(n)}(\bmod)$. By Theorem 19.3, G_{n} consists of the elements of \mathbb{Z}_{n} which are relatively prime to n and so the order of G_{n} is $\varphi(n)$. Also, $b \in G_{n}$. Now b generates a subgroup $\langle b\rangle$ of G_{n} of some order m which divides $\varphi(n)$ (the order of G_{n}) by Lagrange's Theorem. Now $b^{m} \equiv 1(\bmod n)$ (see the proof of Case II of Theorem 6.10) and so $b^{\varphi(n)} \equiv 1(\bmod n)$. Therefore $a^{\varphi(n)} \equiv 1(\bmod n)$.

Theorem 20.8. Euler's Theorem

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)}-1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1(\bmod n)$.

Proof. For integer a relatively prime to n there exists $k \in \mathbb{Z}$ such that $0<a+k n<n$. Notice that $b=a+k n$ is relatively prime to $n \mathbb{Z}$ (if n and b have a common factor, then the factor would have to divide a but then a and n would not be relatively prime). In other words, the coset $a+n \mathbb{Z}$ of $n \mathbb{Z}$ contains an integer $b<n$ and relatively prime to n. Since a and b from the same coset, then $a \equiv b(\bmod n)$ and so $a^{\varphi(n)} \equiv b^{\varphi(n)}(\bmod)$. By Theorem 19.3, G_{n} consists of the elements of \mathbb{Z}_{n} which are relatively prime to n and so the order of G_{n} is $\varphi(n)$. Also, $b \in G_{n}$. Now b generates a subgroup $\langle b\rangle$ of G_{n} of some order m which divides $\varphi(n)$ (the order of G_{n}) by Lagrange's Theorem. Now $b^{m} \equiv 1(\bmod n)$ (see the proof of Case II of Theorem 6.10) and so $b^{\varphi(n)} \equiv 1(\bmod n)$. Therefore $a^{\varphi(n)} \equiv 1(\bmod n)$.

Theorem 20.10.

Theorem.20.10. Let m be a positive integer and let $a \in \mathbb{Z}_{m}$ be relatively prime to m. For each $b \in \mathbb{Z}_{m}$, the equation $a x=b$ has a unique solution in \mathbb{Z}_{m}.
proof (continued). By Theorem 20.6, a is a unit in \mathbb{Z}_{m} (since G_{n} is a multiplicative group and so a has a multiplicative inverse, $a^{-1} \in \mathbb{Z}_{m}$). So $a x=b$ implies $a^{-1} a x=a^{-1} b$ or $x=a^{-1} b$ and this solutions is unique by the implication (as a result of the first that multiplication is the binary operation in G_{n}).

Theorem 20.12.

Theorem. 20.12. Let m be a natural number and let $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_{m}. Proof. First, suppose $s \in \mathbb{Z}_{m}$ in a solution of $a x=b$. Then $a s-b=q m=0(\bmod m)$ for some $q \in \mathbb{Z}$. Since d divides a and m, it must also divide b. So if $a x=b$ has a solution then d divides b. Now suppose d divides b. Let $a=a_{1} d, b=b_{1} d$, and $m=m_{1} d$. Then the equation as $-b=q m$ can be written as $d\left(a_{1} s-b_{1}\right)=d q m_{1}$ or $a_{1} s-b_{1}=q m_{1}$. So $a s-b$ is a multiple of m if and only if $a_{1} s-b_{1}$ is a multiple of m_{1}. So the solutions s of $a x \equiv b(\bmod m)$ are precisely the elements that satisfy $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$. Since a_{1} and m_{1} are relatively prime (by the choice of d), then there is one solution s to $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$ in \mathbb{Z}_{m}, by Theorem 20.10.

Theorem 20.12.

Theorem. 20.12. Let m be a natural number and let $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_{m}. Proof. First, suppose $s \in \mathbb{Z}_{m}$ in a solution of $a x=b$. Then $a s-b=q m=0(\bmod m)$ for some $q \in \mathbb{Z}$. Since d divides a and m, it must also divide b. So if $a x=b$ has a solution then d divides b.
Now suppose d divides b. Let $a=a_{1} d, b=b_{1} d$, and $m=m_{1} d$. Then the equation as $-b=q m$ can be written as $d\left(a_{1} s-b_{1}\right)=d q m_{1}$ or $a_{1} s-b_{1}=q m_{1}$. So $a s-b$ is a multiple of m if and only if $a_{1} s-b_{1}$ is a multiple of m_{1}. So the solutions s of $a x \equiv b(\bmod m)$ are precisely the elements that satisfy $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$. Since a_{1} and m_{1} are relatively prime (by the choice of d), then there is one solution s to $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$ in \mathbb{Z}_{m}, by Theorem 20.10. The elements of Z_{m} which reduce to s modulo m_{1} (and hence are solutions to $a x \equiv b(\bmod m)$ are $s, s+m_{1}, s+2 m_{1}, \ldots, s+(d-1) m_{1}$. These are the solutions to $a x \equiv b(\bmod m)$ and therefore there are d solutions.

Theorem 20.12.

Theorem. 20.12. Let m be a natural number and let $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_{m}. Proof. First, suppose $s \in \mathbb{Z}_{m}$ in a solution of $a x=b$. Then $a s-b=q m=0(\bmod m)$ for some $q \in \mathbb{Z}$. Since d divides a and m, it must also divide b. So if $a x=b$ has a solution then d divides b.
Now suppose d divides b. Let $a=a_{1} d, b=b_{1} d$, and $m=m_{1} d$. Then the equation as $-b=q m$ can be written as $d\left(a_{1} s-b_{1}\right)=d q m_{1}$ or $a_{1} s-b_{1}=q m_{1}$. So $a s-b$ is a multiple of m if and only if $a_{1} s-b_{1}$ is a multiple of m_{1}. So the solutions s of $a x \equiv b(\bmod m)$ are precisely the elements that satisfy $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$. Since a_{1} and m_{1} are relatively prime (by the choice of d), then there is one solution s to $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$ in \mathbb{Z}_{m}, by Theorem 20.10. The elements of Z_{m} which reduce to s modulo m_{1} (and hence are solutions to $a x \equiv b(\bmod m)$ are $s, s+m_{1}, s+2 m_{1}, \ldots, s+(d-1) m_{1}$. These are the solutions to $a x \equiv b(\bmod m)$ and therefore there are d solutions.

