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Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If a ∈ Z and p is a prime not dividing a, then p divides
ap−1 − 1. That is, ap−1 ≡ 1 (mod p) for a 6≡ 0 (mod p).

Proof. By Corollary, 1, 2, 3, . . . , p − 1 forms a group of order p − 1 under
multiplication modulo p. Since the order of any element in a group divides
the order of the group (Theorem 10.12), for b 6= 0 and b ∈ Zp, we have
bp−1 = 1 in Zp, or bp−1 ≡ 1 (mod p).

Now Zp is isomorphic to Z/pZ
that both as additive and multiplicative groups (recall that the elements of
Z/pZ are the cosets of the form a + pZ). So for a ∈ Z, a ∈ 0 + pZ, we
have ap−1 ∈ 1 + pZ. That is, ap−1 ≡ 1 (mod p).
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Theorem 20.6.

Theorem 20.6.

Theorem. 20.6. The set Gn of nonzero elements of Zn that are not 0
divisions forms a group under multiplication modulo n.
Proof. First, we show Gn is closed under multiplication. Let a, b ∈ Gn.
Suppose ab 6∈ Gn. Then there is some c 6= 0 in Zn such that (ab) c = 0
since we have assumed ab is not a division of 0. Now (ab) c = 0 implies
that a (bc) = 0. Since b ∈ Gn and c 6= 0, then bc 6= 0. But with bc 6= 0
and a (bc) = 0, we must have a a 0 divisor (i.e., a ∈ Gn) and Gn is closed
under multiplication.

Now to show that Gn is a group. Associativity of multiplication modulo n
is inherited from Zn (G1). Since 1 is not a 0 division, then 1 ∈ Gn (G2). If
a ∈ Gn, then let 1, a1, a2, . . . , ar be the elements of Gn. As in the proof by
Theorem 19.11, the elements of a1, aa1, aa2, . . . , aar are all different, for if
aai = aaj then a (ai − aj) = 0 and since a ∈ Gn, then ai − aj = 0 or
ai = aj . So aaj = 1 for some 0 ≤ j ≤ n (where a0 = 1), and so a is not a
0 divisor then of coarse the inverse of a is not a 0 divisor.
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Theorem 20.8. Euler’s Theorem

Theorem 20.8. Euler’s Theorem

Theorem. 20.8. If a is an integer relatively prime to n, then aϕ(n) − 1 is
divisible by n. That is, aϕ(n) ≡ 1 (mod n).

Proof. For integer a relatively prime to n there exists k ∈ Z such that
0 < a + kn < n. Notice that b = a + kn is relatively prime to nZ (if n and
b have a common factor, then the factor would have to divide a but then
a and n would not be relatively prime).

In other words, the coset a + nZ of
nZ contains an integer b < n and relatively prime to n. Since a and b
from the same coset, then a ≡ b (mod n) and so aϕ(n) ≡ bϕ(n) (mod ). By
Theorem 19.3, Gn consists of the elements of Zn which are relatively prime
to n and so the order of Gn is ϕ (n). Also, b ∈ Gn. Now b generates a
subgroup 〈b〉 of Gn of some order m which divides ϕ (n) (the order of Gn)
by Lagrange’s Theorem. Now bm ≡ 1 (mod n) (see the proof of Case II of
Theorem 6.10) and so bϕ(n) ≡ 1 (mod n). Therefore
aϕ(n) ≡ 1 (mod n).
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Theorem 20.10.

Theorem 20.10.

Theorem.20.10. Let m be a positive integer and let a ∈ Zm be relatively
prime to m. For each b ∈ Zm, the equation ax = b has a unique solution
in Zm.

proof (continued). By Theorem 20.6, a is a unit in Zm (since Gn is a
multiplicative group and so a has a multiplicative inverse, a−1 ∈ Zm). So
ax = b implies a−1ax = a−1b or x = a−1b and this solutions is unique by
the implication (as a result of the first that multiplication is the binary
operation in Gn).
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Theorem 20.12.

Theorem 20.12.

Theorem. 20.12. Let m be a natural number and let a, b ∈ Zm. Let
d = gcd (a,m). The equation ax = b has a solution in Zm if and only if d
divides b. When d divides b, the equation has exactly d solutions in Zm.

Proof. First, suppose s ∈ Zm in a solution of ax = b. Then
as − b = qm = 0 (mod m) for some q ∈ Z. Since d divides a and m, it
must also divide b. So if ax = b has a solution then d divides b.
Now suppose d divides b. Let a = a1d , b = b1d , and m = m1d . Then the
equation as − b = qm can be written as d (a1s − b1) = dqm1 or
a1s − b1 = qm1. So as − b is a multiple of m if and only if a1s − b1 is a
multiple of m1. So the solutions s of ax ≡ b (mod m) are precisely the
elements that satisfy a1x ≡ b1 (mod m1). Since a1 and m1 are relatively
prime (by the choice of d), then there is one solution s to
a1x ≡ b1 (mod m1) in Zm, by Theorem 20.10.

The elements of Zm which
reduce to s modulo m1 ( and hence are solutions to ax ≡ b ( mod m) are
s, s + m1, s + 2m1, . . . , s + (d − 1) m1. These are the solutions to
ax ≡ b (mod m) and therefore there are d solutions.
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