Introduction to Modern Algebra

Part IV. Rings and Fields IV.20. Fermat's and Euler's Theorem

- 1 Theorem 20.1. Little Theorem of Fermat
 - 2 Theorem 20.6.
- 3 Theorem 20.8. Euler's Theorem
 - 4 Theorem 20.10.
 - 5 Theorem 20.12.

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1} - 1$. That is, $a^{p-1} \equiv 1 \pmod{p}$ for $a \not\equiv 0 \pmod{p}$.

Proof. By Corollary, 1, 2, 3, ..., p-1 forms a group of order p-1 under multiplication modulo p. Since the order of any element in a group divides the order of the group (Theorem 10.12), for $b \neq 0$ and $b \in \mathbb{Z}_p$, we have $b^{p-1} = 1$ in \mathbb{Z}_p , or $b^{p-1} \equiv 1 \pmod{p}$.

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1} - 1$. That is, $a^{p-1} \equiv 1 \pmod{p}$ for $a \not\equiv 0 \pmod{p}$.

Proof. By Corollary, $1, 2, 3, \ldots, p-1$ forms a group of order p-1 under multiplication modulo p. Since the order of any element in a group divides the order of the group (Theorem 10.12), for $b \neq 0$ and $b \in \mathbb{Z}_p$, we have $b^{p-1} \equiv 1$ in \mathbb{Z}_p , or $b^{p-1} \equiv 1 \pmod{p}$. Now \mathbb{Z}_p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ that both as additive and multiplicative groups (recall that the elements of $\mathbb{Z}/p\mathbb{Z}$ are the cosets of the form $a + p\mathbb{Z}$). So for $a \in \mathbb{Z}$, $a \in 0 + p\mathbb{Z}$, we have $a^{p-1} \in 1 + p\mathbb{Z}$. That is, $a^{p-1} \equiv 1 \pmod{p}$.

Theorem 20.1. Little Theorem of Fermat

Theorem 20.1. If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1} - 1$. That is, $a^{p-1} \equiv 1 \pmod{p}$ for $a \not\equiv 0 \pmod{p}$.

Proof. By Corollary, $1, 2, 3, \ldots, p-1$ forms a group of order p-1 under multiplication modulo p. Since the order of any element in a group divides the order of the group (Theorem 10.12), for $b \neq 0$ and $b \in \mathbb{Z}_p$, we have $b^{p-1} \equiv 1$ in \mathbb{Z}_p , or $b^{p-1} \equiv 1 \pmod{p}$. Now \mathbb{Z}_p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ that both as additive and multiplicative groups (recall that the elements of $\mathbb{Z}/p\mathbb{Z}$ are the cosets of the form $a + p\mathbb{Z}$). So for $a \in \mathbb{Z}$, $a \in 0 + p\mathbb{Z}$, we have $a^{p-1} \in 1 + p\mathbb{Z}$. That is, $a^{p-1} \equiv 1 \pmod{p}$.

Theorem. 20.6. The set G_n of nonzero elements of \mathbb{Z}_n that are not 0 divisions forms a group under multiplication modulo n.

Proof. First, we show G_n is closed under multiplication. Let $a, b \in G_n$. Suppose $ab \notin G_n$. Then there is some $c \neq 0$ in \mathbb{Z}_n such that (ab) c = 0 since we have assumed ab is not a division of 0. Now (ab) c = 0 implies that a(bc) = 0. Since $b \in G_n$ and $c \neq 0$, then $bc \neq 0$. But with $bc \neq 0$ and a(bc) = 0, we must have a = 0 divisor (i.e., $a \in G_n$) and G_n is closed under multiplication.

Theorem. 20.6. The set G_n of nonzero elements of \mathbb{Z}_n that are not 0 divisions forms a group under multiplication modulo n.

Proof. First, we show G_n is closed under multiplication. Let $a, b \in G_n$. Suppose $ab \notin G_n$. Then there is some $c \neq 0$ in \mathbb{Z}_n such that (ab) c = 0since we have assumed ab is not a division of 0. Now (ab) c = 0 implies that a(bc) = 0. Since $b \in G_n$ and $c \neq 0$, then $bc \neq 0$. But with $bc \neq 0$ and a(bc) = 0, we must have a = 0 divisor (i.e., $a \in G_n$) and G_n is closed under multiplication.

Now to show that G_n is a group. Associativity of multiplication modulo n is inherited from $\mathbb{Z}_n(G_1)$. Since 1 is not a 0 division, then $1 \in G_n(G_2)$. If $a \in G_n$, then let $1, a_1, a_2, \ldots, a_r$ be the elements of G_n . As in the proof by Theorem 19.11, the elements of $a_1, aa_1, aa_2, \ldots, aa_r$ are all different, for if $aa_i = aa_j$ then $a(a_i - a_j) = 0$ and since $a \in G_n$, then $a_i - a_j = 0$ or $a_i = a_j$.

Theorem. 20.6. The set G_n of nonzero elements of \mathbb{Z}_n that are not 0 divisions forms a group under multiplication modulo n.

Proof. First, we show G_n is closed under multiplication. Let $a, b \in G_n$. Suppose $ab \notin G_n$. Then there is some $c \neq 0$ in \mathbb{Z}_n such that (ab) c = 0since we have assumed ab is not a division of 0. Now (ab) c = 0 implies that a(bc) = 0. Since $b \in G_n$ and $c \neq 0$, then $bc \neq 0$. But with $bc \neq 0$ and a(bc) = 0, we must have a = 0 divisor (i.e., $a \in G_n$) and G_n is closed under multiplication.

Now to show that G_n is a group. Associativity of multiplication modulo n is inherited from $\mathbb{Z}_n(G_1)$. Since 1 is not a 0 division, then $1 \in G_n(G_2)$. If $a \in G_n$, then let $1, a_1, a_2, \ldots, a_r$ be the elements of G_n . As in the proof by Theorem 19.11, the elements of $a_1, aa_1, aa_2, \ldots, aa_r$ are all different, for if $aa_i = aa_j$ then $a(a_i - a_j) = 0$ and since $a \in G_n$, then $a_i - a_j = 0$ or $a_i = a_j$. So $aa_j = 1$ for some $0 \le j \le n$ (where $a_0 = 1$), and so a is not a 0 divisor then of coarse the inverse of a is not a 0 divisor.

Theorem. 20.6. The set G_n of nonzero elements of \mathbb{Z}_n that are not 0 divisions forms a group under multiplication modulo n.

Proof. First, we show G_n is closed under multiplication. Let $a, b \in G_n$. Suppose $ab \notin G_n$. Then there is some $c \neq 0$ in \mathbb{Z}_n such that (ab) c = 0since we have assumed ab is not a division of 0. Now (ab) c = 0 implies that a(bc) = 0. Since $b \in G_n$ and $c \neq 0$, then $bc \neq 0$. But with $bc \neq 0$ and a(bc) = 0, we must have a = 0 divisor (i.e., $a \in G_n$) and G_n is closed under multiplication.

Now to show that G_n is a group. Associativity of multiplication modulo n is inherited from $\mathbb{Z}_n(G_1)$. Since 1 is not a 0 division, then $1 \in G_n(G_2)$. If $a \in G_n$, then let $1, a_1, a_2, \ldots, a_r$ be the elements of G_n . As in the proof by Theorem 19.11, the elements of $a_1, aa_1, aa_2, \ldots, aa_r$ are all different, for if $aa_i = aa_j$ then $a(a_i - a_j) = 0$ and since $a \in G_n$, then $a_i - a_j = 0$ or $a_i = a_j$. So $aa_j = 1$ for some $0 \le j \le n$ (where $a_0 = 1$), and so a is not a 0 divisor then of coarse the inverse of a is not a 0 divisor.

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)} - 1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof. For integer *a* relatively prime to *n* there exists $k \in \mathbb{Z}$ such that 0 < a + kn < n. Notice that b = a + kn is relatively prime to $n\mathbb{Z}$ (if *n* and *b* have a common factor, then the factor would have to divide *a* but then *a* and *n* would not be relatively prime).

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)} - 1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof. For integer *a* relatively prime to *n* there exists $k \in \mathbb{Z}$ such that 0 < a + kn < n. Notice that b = a + kn is relatively prime to $n\mathbb{Z}$ (if *n* and *b* have a common factor, then the factor would have to divide *a* but then *a* and *n* would not be relatively prime). In other words, the coset $a + n\mathbb{Z}$ of $n\mathbb{Z}$ contains an integer b < n and relatively prime to *n*. Since *a* and *b* from the same coset, then $a \equiv b \pmod{n}$ and so $a^{\varphi(n)} \equiv b^{\varphi(n)} \pmod{n}$.

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)} - 1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof. For integer a relatively prime to n there exists $k \in \mathbb{Z}$ such that 0 < a + kn < n. Notice that b = a + kn is relatively prime to $n\mathbb{Z}$ (if n and b have a common factor, then the factor would have to divide a but then *a* and *n* would not be relatively prime). In other words, the coset $a + n\mathbb{Z}$ of $n\mathbb{Z}$ contains an integer b < n and relatively prime to n. Since a and bfrom the same coset, then $a \equiv b \pmod{n}$ and so $a^{\varphi(n)} \equiv b^{\varphi(n)} \pmod{1}$. By Theorem 19.3, G_n consists of the elements of \mathbb{Z}_n which are relatively prime to *n* and so the order of G_n is $\varphi(n)$. Also, $b \in G_n$. Now *b* generates a subgroup $\langle b \rangle$ of G_n of some order *m* which divides $\varphi(n)$ (the order of G_n) by Lagrange's Theorem. Now $b^m \equiv 1 \pmod{n}$ (see the proof of Case II of Theorem 6.10) and so $b^{\varphi(n)} \equiv 1 \pmod{n}$. Therefore $a^{\varphi(n)} \equiv 1 \pmod{n}.$

Theorem. 20.8. If a is an integer relatively prime to n, then $a^{\varphi(n)} - 1$ is divisible by n. That is, $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof. For integer a relatively prime to n there exists $k \in \mathbb{Z}$ such that 0 < a + kn < n. Notice that b = a + kn is relatively prime to $n\mathbb{Z}$ (if n and b have a common factor, then the factor would have to divide a but then *a* and *n* would not be relatively prime). In other words, the coset $a + n\mathbb{Z}$ of $n\mathbb{Z}$ contains an integer b < n and relatively prime to n. Since a and bfrom the same coset, then $a \equiv b \pmod{n}$ and so $a^{\varphi(n)} \equiv b^{\varphi(n)} \pmod{1}$. By Theorem 19.3, G_n consists of the elements of \mathbb{Z}_n which are relatively prime to *n* and so the order of G_n is $\varphi(n)$. Also, $b \in G_n$. Now *b* generates a subgroup $\langle b \rangle$ of G_n of some order *m* which divides $\varphi(n)$ (the order of G_n) by Lagrange's Theorem. Now $b^m \equiv 1 \pmod{n}$ (see the proof of Case II of Theorem 6.10) and so $b^{\varphi(n)} \equiv 1 \pmod{n}$. Therefore $a^{\varphi(n)} \equiv 1 \pmod{n}.$

Theorem.20.10. Let *m* be a positive integer and let $a \in \mathbb{Z}_m$ be relatively prime to *m*. For each $b \in \mathbb{Z}_m$, the equation ax = b has a unique solution in \mathbb{Z}_m .

proof (continued). By Theorem 20.6, *a* is a unit in \mathbb{Z}_m (since G_n is a multiplicative group and so *a* has a multiplicative inverse, $a^{-1} \in \mathbb{Z}_m$). So ax = b implies $a^{-1}ax = a^{-1}b$ or $x = a^{-1}b$ and this solutions is unique by the implication (as a result of the first that multiplication is the binary operation in G_n).

Theorem 20.12.

Theorem. 20.12. Let *m* be a natural number and let $a, b \in \mathbb{Z}_m$. Let $d = \gcd(a, m)$. The equation ax = b has a solution in \mathbb{Z}_m if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_m . **Proof.** First, suppose $s \in \mathbb{Z}_m$ in a solution of ax = b. Then $as - b = qm = 0 \pmod{m}$ for some $q \in \mathbb{Z}$. Since d divides a and m, it must also divide b. So if ax = b has a solution then d divides b. Now suppose d divides b. Let $a = a_1d$, $b = b_1d$, and $m = m_1d$. Then the equation as - b = qm can be written as $d(a_1s - b_1) = dqm_1$ or $a_1s - b_1 = qm_1$. So as - b is a multiple of m if and only if $a_1s - b_1$ is a multiple of m_1 . So the solutions s of $ax \equiv b \pmod{m}$ are precisely the elements that satisfy $a_1 x \equiv b_1 \pmod{m_1}$. Since a_1 and m_1 are relatively prime (by the choice of d), then there is one solution s to $a_1 x \equiv b_1 \pmod{m_1}$ in \mathbb{Z}_m , by Theorem 20.10.

Theorem 20.12.

Theorem. 20.12. Let *m* be a natural number and let $a, b \in \mathbb{Z}_m$. Let $d = \gcd(a, m)$. The equation ax = b has a solution in \mathbb{Z}_m if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_m . **Proof.** First, suppose $s \in \mathbb{Z}_m$ in a solution of ax = b. Then $as - b = qm = 0 \pmod{m}$ for some $q \in \mathbb{Z}$. Since d divides a and m, it must also divide b. So if ax = b has a solution then d divides b. Now suppose d divides b. Let $a = a_1d$, $b = b_1d$, and $m = m_1d$. Then the equation as - b = qm can be written as $d(a_1s - b_1) = dqm_1$ or $a_1s - b_1 = qm_1$. So as - b is a multiple of m if and only if $a_1s - b_1$ is a multiple of m_1 . So the solutions s of $ax \equiv b \pmod{m}$ are precisely the elements that satisfy $a_1 x \equiv b_1 \pmod{m_1}$. Since a_1 and m_1 are relatively prime (by the choice of d), then there is one solution s to $a_1 x \equiv b_1 \pmod{m_1}$ in \mathbb{Z}_m , by Theorem 20.10. The elements of Z_m which reduce to s modulo m_1 (and hence are solutions to $ax \equiv b$ (mod m) are $s, s + m_1, s + 2m_1, \ldots, s + (d-1)m_1$. These are the solutions to $ax \equiv b \pmod{m}$ and therefore there are d solutions.

()

Theorem 20.12.

Theorem. 20.12. Let *m* be a natural number and let $a, b \in \mathbb{Z}_m$. Let $d = \gcd(a, m)$. The equation ax = b has a solution in \mathbb{Z}_m if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_m . **Proof.** First, suppose $s \in \mathbb{Z}_m$ in a solution of ax = b. Then $as - b = qm = 0 \pmod{m}$ for some $q \in \mathbb{Z}$. Since d divides a and m, it must also divide b. So if ax = b has a solution then d divides b. Now suppose d divides b. Let $a = a_1d$, $b = b_1d$, and $m = m_1d$. Then the equation as - b = qm can be written as $d(a_1s - b_1) = dqm_1$ or $a_1s - b_1 = qm_1$. So as - b is a multiple of m if and only if $a_1s - b_1$ is a multiple of m_1 . So the solutions s of $ax \equiv b \pmod{m}$ are precisely the elements that satisfy $a_1 x \equiv b_1 \pmod{m_1}$. Since a_1 and m_1 are relatively prime (by the choice of d), then there is one solution s to $a_1 x \equiv b_1 \pmod{m_1}$ in \mathbb{Z}_m , by Theorem 20.10. The elements of Z_m which reduce to s modulo m_1 (and hence are solutions to $ax \equiv b \pmod{m}$ are $s, s + m_1, s + 2m_1, \ldots, s + (d-1)m_1$. These are the solutions to $ax \equiv b \pmod{m}$ and therefore there are d solutions.