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Lemma 21.2.

Lemma 21.2.

Lemma 21.2. The relation ∼ between elements of S is an equivalence
relation.

Proof. First, (a, b) ∼ (a, b) since ab = ba since multiplicative in D is
commutative. So ∼ is reflexive.

Second, if (a, b) ∼ (c , d) then ad = bc . By commutativity of
multiplication, cb = da and so (c , d) ∼ (a, d) and ∼ is symmetric.

Thirdly, suppose (a, b) ∼ (c , d) and (c , d) ∼ (r , s). Then ad = bc and
cs = dr . Therefore

asd = sad by commutativity

= sbc since ad = bc

= bcs by commutativity

= bdr since cs = dr

= brd by commutativity.

() Introduction to Modern Algebra December 8, 2023 3 / 18



Lemma 21.2.

Lemma 21.2.

Lemma 21.2. The relation ∼ between elements of S is an equivalence
relation.

Proof. First, (a, b) ∼ (a, b) since ab = ba since multiplicative in D is
commutative. So ∼ is reflexive.

Second, if (a, b) ∼ (c , d) then ad = bc . By commutativity of
multiplication, cb = da and so (c , d) ∼ (a, d) and ∼ is symmetric.

Thirdly, suppose (a, b) ∼ (c , d) and (c , d) ∼ (r , s). Then ad = bc and
cs = dr . Therefore

asd = sad by commutativity

= sbc since ad = bc

= bcs by commutativity

= bdr since cs = dr

= brd by commutativity.

() Introduction to Modern Algebra December 8, 2023 3 / 18



Lemma 21.2.

Lemma 21.2.

Lemma 21.2. The relation ∼ between elements of S is an equivalence
relation.

Proof. First, (a, b) ∼ (a, b) since ab = ba since multiplicative in D is
commutative. So ∼ is reflexive.

Second, if (a, b) ∼ (c , d) then ad = bc . By commutativity of
multiplication, cb = da and so (c , d) ∼ (a, d) and ∼ is symmetric.

Thirdly, suppose (a, b) ∼ (c , d) and (c , d) ∼ (r , s). Then ad = bc and
cs = dr . Therefore

asd = sad by commutativity

= sbc since ad = bc

= bcs by commutativity

= bdr since cs = dr

= brd by commutativity.

() Introduction to Modern Algebra December 8, 2023 3 / 18



Lemma 21.2.

Lemma 21.2.

Lemma 21.2. The relation ∼ between elements of S is an equivalence
relation.

Proof. First, (a, b) ∼ (a, b) since ab = ba since multiplicative in D is
commutative. So ∼ is reflexive.

Second, if (a, b) ∼ (c , d) then ad = bc . By commutativity of
multiplication, cb = da and so (c , d) ∼ (a, d) and ∼ is symmetric.

Thirdly, suppose (a, b) ∼ (c , d) and (c , d) ∼ (r , s). Then ad = bc and
cs = dr . Therefore

asd = sad by commutativity

= sbc since ad = bc

= bcs by commutativity

= bdr since cs = dr

= brd by commutativity.

() Introduction to Modern Algebra December 8, 2023 3 / 18



Lemma 21.2.

Lemma 21.2 (continued).

Lemma 21.2. The relation ∼ between elements of S is an equivalence
relation.

Proof (continued). So (a, b) ∼ (c , d) and (c , d) ∼ (r , s) implies
asd = brd . Since d 6= 0 and D is an integral domain (no divisors of 0),
then by Theorem 19.5 the laws of cancellation hold and so as = br . That
is (a, b) ∼ (r , s) and ∼ is transitive.

Therefore ∼ is an equivalence relation, as claimed.
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Lemma 21.3.

Lemma 21.3.

Lemma 21.3. For [(a, b)] , [(c , d)] ∈ F , the equations

[(a, b)] + [(c , d)] = [(ad + bc , bd)] and [(a, b)] · [(c , d)] = [(ac, bd)]

give well-defined operations of addition and multiplication on F .

Proof. First, notice for [(a, b)] , [(c , d)] ∈ F , we have (a, b) , (c , d) ∈ S
with b 6= 0 and d 6= 0. So bd 6= 0 since 0 is an integral domain and
(ad + bc , bd) , (ac, bd) ∈ S and so the right hand sides of the two
equations are in fact elements of F .

Now to show the independence of the choice of representatives from the
equivalence classes. Let (a1, b1) ∈ [(a, b))] and (c1, d1) ∈ [(c , d)]. Then
(a1, b1) ∼ (a, b) and (c1, d1) ∼ (c , d). So a1b = b1a and c1d = d1c . So
a1b (d1d) + c1d (b1b) = b1a (d1d) + d1c (b1b) and so
(a1d1 + b1c1) bd = b1d1 (ad + bc) and then
(a1d1 + b1c1, b1d1) ∼ (ad + bc , bd).
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Lemma 21.3.

Lemma 21.3 (continued).

Lemma 21.3. For [(a, b)] , [(c , d)] ∈ F , the equations

[(a, b)] + [(c , d)] = [(ad + bc , bd)] and [(a, b)] · [(c , d)] = [(ac, bd)]

give well-defined operations of addition and multiplication on F .

Proof (continued). That is (a1d1 + b1c1, b1d1) ∈ [(ad + bc , bd)]. So
addition in F is well defined. As above, a1b = b1a and c1d = d1c imply
a1b (c1d) = b1a (d1c) or a1c1bd = b1d1ac. That is
(a1c1, b1d1) ∼ (ac, bd), and (a1c1, b1d1) ∼ [(ac, bd)]. So multiplication is
F is well defined, as claimed.

() Introduction to Modern Algebra December 8, 2023 6 / 18



Lemma 21.3.

Lemma 21.3 (continued).

Lemma 21.3. For [(a, b)] , [(c , d)] ∈ F , the equations

[(a, b)] + [(c , d)] = [(ad + bc , bd)] and [(a, b)] · [(c , d)] = [(ac, bd)]

give well-defined operations of addition and multiplication on F .

Proof (continued). That is (a1d1 + b1c1, b1d1) ∈ [(ad + bc , bd)]. So
addition in F is well defined. As above, a1b = b1a and c1d = d1c imply
a1b (c1d) = b1a (d1c) or a1c1bd = b1d1ac. That is
(a1c1, b1d1) ∼ (ac, bd), and (a1c1, b1d1) ∼ [(ac, bd)]. So multiplication is
F is well defined, as claimed.

() Introduction to Modern Algebra December 8, 2023 6 / 18



Lemma 21.A.

Lemma 21.A.

Lemma 21.A. F as defined above is a field. That is,

1. + in F is commutative.

2. + in F is associative.

3. [(0, 1)] is the additive identity in F .

4. [(−a, b)] is the additive inverse for [(a, b)] in F .

5. · is associative in F .

6. · is commutative in F .

7. The distribution laws hold in F :
[(a, b)] ·([(c , d)] + [(r , s)]) = [(a, b)] · [(c , d)]+[(a, b)] · [(r , s)]
(right distribution will follow from commutativity of ·).

8. [(1, 1)] is the multiplicative identity in F .

9. If [(a, b)] ∈ F , [(a, b)] 6= [(0, 1)], then [(b, a)] ∈ F is the
multiplicative inverse of [(a, b)].
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Lemma 21.A.

Lemma 21.A (continued 1).

Lemma 21.A.

1. + in F is commutative.

2. + in F is associative.

Proof.
1. Let [(a, b)] ∈ F . Then
[(a, b)] + [(c , d)] = [(ad + bc , bd)] = [(cb + da, db)] since
ad + bc = cb + da and bd = db in integral domain D.

2. Let [(a, b)] , [(c , d)] , [(r , s)] ∈ F . Then
([(a, b)] + [(c , d)]) + [(r , s)] = [(ad + bc , bd)] + [(r , s)] =
[(ad + bc) s + (bd) r , (bd) s] = [a (ds) + b (cs + dr) , b (ds)] =
[(a, b)] + [(cs + dr , ds)] = [(a, b)] + ([(c , d)] + [(r , s)]) and + is
associative.
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Lemma 21.A.

Lemma 21.A (continued 2).

Lemma 21.A.

3. [(0, 1)] is the additive identity in F .

4. [(−a, b)] is the additive inverse for [(a, b)] in F .

5. · is associative in F .

Proof.
3. Let [(a, b)] ∈ F , then
[(a, b)] + [(0, 1)] = [(a (1) + b (0) , b (1))] = [(a, b)]. Since + is
commutative, [(0, 1)] + [(a, b)] = [(a, b)] and [(0, 1)] is the additive
identity.

4. For [(a, b)] ∈ F , b 6= 0 and so [(−a, b)] ∈ F . Now
[(a, b)] + [(−a, b)] = [a (b) + b (−a) , b] = [0, b]. Now [0, 1] ∼ [0, b] since
0 · b = 1 · 0. So [(a, b)] + [(−a, b)] = [(0, 1)] and since + is commutative,
[(−a, b)] + [(a, b)] = [(0, 1)] and [(−a, b)] is the + inverse of [(a, b)].
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Lemma 21.A.

Lemma 21.A (continued 3).

Lemma 21.A.

5. · is associative in F .

6. · is commutative in F .

Proof (continued).
5. Let [(a, b)] , [(c , d)] , [(r , s)] ∈ F . Then
[(a, b)] · ([(c , d)] · [(r , s)]) = [(a, b)] · [(cr , ds)] = [(acr , bds)] =
[(ac, bd)] · [(r , s)] = ([(a, b)] · [(c , d)]) · [(r , s)] and · is associative.

6. Let [(a, b)] , [(c , d)] ∈ F . Then
[(a, b)] · [(c , d)] = [(ac, bd)] = [(ca, db)], since · is commutative in D,
= [(c , d)] · [(a, b)]. So · is commutative in F .
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Lemma 21.A.

Lemma 21.A (continued 3).

Lemma 21.A.
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Lemma 21.A.

Lemma 21.A (continued 4).

Lemma 21.A.

7. The distribution laws hold in F :
[(a, b)] ·([(c , d)] + [(r , s)]) = [(a, b)] · [(c , d)]+[(a, b)] · [(r , s)]
(right distribution will follow from commutativity of ·).

8. [(1, 1)] is the multiplicative identity in F .

Proof (continued).
7. We have [(a, b)] · ([(c , d)] + [(r , s)]) = [(a, b)] [(cs + dr , ds)] =
[(a (cs + dr) , b (ds))] = [(acs + adr , bds)] = [(acs, bds)] + [(adr , bds)] =
[(ac, bd)] + [(ar , bs)], since (acs, bds) ∼ (ac, bd) and
(adr , bds) ∼ (ar , bs), Therefore
[(a, b)] · ([(c , d)] + [(r , s)]) = [(a, b)] · [(c , d)]+ [(a, b)] · [(r , s)], as claimed.

8. Let [(a, b)] ∈ F . Then [(a, b)] · [(1, 1)] = [(a (1) , b (1))] = [(a, b)].
Since · is commutative, [(1, 1)] · [(a, b)] = [(a, b)] and [(1, 1)] is the
multiplicative identity.
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Lemma 21.A.

Lemma 21.A (continued 5).

Lemma 21.A.

9. If [(a, b)] ∈ F , [(a, b)] 6= [(0, 1)], then [(b, a)] ∈ F is the
multiplicative inverse of [(a, b)].

Proof (continued).
9. Since [(a, b)] 6= [(0, 1)], then a 6= 0 and so [(b, a)] ∈ F . Now
[(a, b)] · [(b, a)] = [(ab, ba)]. Since (ab, ba) = (ab, ab) ∼ (1, 1), then
[(a, b)] · [(b, a)] = [(1, 1)]. Since · is commutative by (6),
[(b, a)] · [(a, b)] = [(1, 1)] and [(b, a)] is the multiplicative inverse of
[(a, b)].
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Lemma 21.4.

Lemma 21.4.

Lemma 21.4. The map i : D → F given by i (a) = [(a, 1)] is an
isomorphism of D with a subring of F .

Proof. First,

i (a + b) = [(a + b, 1)] = [(a, 1) + (b, 1)] = [(a, 1)]+[(b, 1)] = i (a)+ i (b) .

Also,
i (ab) = [(ab, 1)] = [(a, 1)] · [(b, 1)] = i (a) · i (b) .

Now to show i is one-to-one. Suppose i (a) = i (b) then [(a, 1)] = [(b, 1)]
and so (a, 1) ∼ (b, 1), or a1 = 1b, or a = b. So i is one-to-one and i
preserves sums and products. Next i is onto its range which is a subset of
F . Therefore i is a ring isomorphism between D and a subring of F . In
fact, since D is an integral domain, so is i [D].
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Theorem 21.6.

Theorem 21.6.

Theorem 21.6. Let F be a field of quotients of D and let L be any field
containing D. Then there exists a map ψ : F → L that gives an
isomorphism of F with a subfield of L such that ψ (a) = a for a ∈ D.

Proof. By definition, any element of F is a quotient of elements in i [D].
If f ∈ F satisfies f = i (a) · (i (b))−1, then we denote this as f = a/Fb
(here, ‘a’ and ‘b’ are treated as elements of F ∗ although they are not, but
their images i (a) and i (b) are in F ). Define ψ : F → L as ψ (a) = a for
a ∈ D ψ (f ) = ψ (a) /Lψ (b) for f = a/Fb ∈ F\i [D].

We now need to
verify that ψ is well-defined (notice that f may be the quotient of many
pairs of elements of i [D], so we need to make sure that the definition of ψ
is independent of this representation of f as a quotient). First, if f = a/Fb
then b 6= 0 and since ψ is the identity function on D and 0 ∈ D, then
ψ (f ) = ψ (a) /iψ (b) is defined because ψ (b) 6= 0 (since b 6= 0).
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(here, ‘a’ and ‘b’ are treated as elements of F ∗ although they are not, but
their images i (a) and i (b) are in F ). Define ψ : F → L as ψ (a) = a for
a ∈ D ψ (f ) = ψ (a) /Lψ (b) for f = a/Fb ∈ F\i [D]. We now need to
verify that ψ is well-defined (notice that f may be the quotient of many
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ψ (f ) = ψ (a) /iψ (b) is defined because ψ (b) 6= 0 (since b 6= 0).
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and y = c/Fd for some a, b, c , d ∈ D, b 6= 0, d 6= 0. Then
ψ (xy) = ψ ((a/Fb) · (c/Fd)) = ψ ((ac) /F (bd)) = ψ (ac) /Lψ (bd), by
definiton of ψ on F , = (ac) /L (bd), since ψ is identity on D,
= (ac) /L (bd), since ψ is identity on D, = (a/Lb) (c/Ld), since D is
integral domain, = ψ (a/Fb)ψ (c/Fd) = ψ (x)ψ (y).
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Theorem 21.6.

Theorem 21.6 (continued 2).

Theorem 21.6. Let F be a field of quotients of D and let L be any field
containing D. Then there exists a map ψ : F → L that gives an
isomorphism of F with a subfield of L such that ψ (a) = a for a ∈ D.

Proof (continued). Next ψ (x + y) = ψ (a/Fb + c/Fd) =
ψ ((ad + bc) /F (bd)) = ψ (ad + bc) /Lψ (bd), be definition of ψ on F ,
= (ad + bc) /L (bd), since ψ is the identity on D,
= a/Lb + c/Ld = ψ (a/Fb) + ψ (c/Fd) = ψ (x) + ψ (y).

Finally, to show ψ is one-to-one, suppose ψ (a/Fb) = ψ (c/Fd). Then
ψ (a) /Lψ (b) = ψ (c) /Lψ (d) and ψ (a)ψ (d) = ψ (b)ψ (c) or (since ψ is
the identity on D) ad = bc . Therefore, a/Fb = c/Fd and so ψ is
one-to-one. Therefore ψ is an isomorphism, as desired.
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Corollary 21.8.

Corollary 21.8.

Corollary 21.8. Every field L containing an integral domain D contains a
field of quotients of D.

Proof. From the proof of Theorem 21.6, we know that F is a field and ψ
is a ring (and field) isomorphism, so ψ [F ] is a field. As seen in the proof,
ϕ [F ] is a field of quotients of elements of D subfield of D.
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Corollary 21.9.

Corollary 21.9.

Corollary 21.9. Any two fields of quotients of an integral domain are
isomorphic.

Proof. Suppose L is a field of quotients of D. Then every element x ∈ L
is of the form x = a/Lb for some a, b ∈ D. So L ⊆ ψ [F ] using the
notation of Theorem 21.6, and similarly ψ [F ] ⊆ L. So ψ [F ] = L and the
two fields of quotients F and L are isomorphic.
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