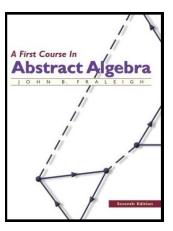
Introduction to Modern Algebra

Part IV. Rings and Fields IV.22. Rings of Polynomials



2 Theorem 22.4 The Evaluation Homomorphism for Field Theory.

Theorem 22.2. The set R[x] of all polynomials in an indeterminate x with coefficients in a ring R is a ring under polynomial addition and multiplication as defined above. If R is commutative, then so is R[x], and if R has units $1 \neq 0$, then 1 (a constant polynomial) is also unity for R[x].

Proof. Since $\langle R, + \rangle$ is an abelian group, then $\langle R[x], + \rangle$ is an abelian group since $c_n = a_n + b_n = b_n + a_n(R_1)$. For associativity of multiplication, let $f(x), g(x), h(x) \in R[x]$ such that $f(x) = \sum_{i=0}^{\infty} a_i x^i$,

$$g(x) = \sum_{j=0} b_j x^j, \text{ and } h(x) = \sum_{h=0} c_k x^k. \text{ Then}$$
$$(f(x) \cdot g(x)) \cdot h(x) = \left[\left(\sum_{n=0}^{\infty} a_i x^i \right) \cdot \left(\sum_{j=0}^{\infty} b_j x^j \right) \right] \cdot \left(\sum_{k=0}^{\infty} c_k x^k \right)$$

Theorem 22.2. The set R[x] of all polynomials in an indeterminate x with coefficients in a ring R is a ring under polynomial addition and multiplication as defined above. If R is commutative, then so is R[x], and if R has units $1 \neq 0$, then 1 (a constant polynomial) is also unity for R[x].

Proof. Since $\langle R, + \rangle$ is an abelian group, then $\langle R[x], + \rangle$ is an abelian group since $c_n = a_n + b_n = b_n + a_n(R_1)$. For associativity of multiplication, let $f(x), g(x), h(x) \in R[x]$ such that $f(x) = \sum_{i=0}^{\infty} a_i x^i$,

$$g(x) = \sum_{j=0}^{\infty} b_j x^j, \text{ and } h(x) = \sum_{h=0}^{\infty} c_k x^k. \text{ Then}$$
$$(f(x) \cdot g(x)) \cdot h(x) = \left[\left(\sum_{n=0}^{\infty} a_i x^i \right) \cdot \left(\sum_{j=0}^{\infty} b_j x^j \right) \right] \cdot \left(\sum_{k=0}^{\infty} c_k x^k \right)$$

Theorem 22.2 (continued 1)

Proof (continued).

$$= \left[\sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} a_i b_{n-i}\right) x^n\right] \cdot \left(\sum_{k=0}^{\infty} c_k x^k\right)$$

$$= \sum_{s=0}^{\infty} \left[\sum_{n=0}^{s} \left(\sum_{i=0}^{n} a_i b_{n-i}\right) c_{s-n}\right] x^s$$

$$= \sum_{s=0}^{\infty} \left(\sum_{i+j+k=s}^{\infty} a_i b_j c_k\right) x^s \text{ since } (i) + (n-i) + (s-n) = s$$

$$= \sum_{s=0}^{\infty} \left[\sum_{m=0}^{s} a_{s-m} \left(\sum_{j=0}^{m} b_j c_{m-j}\right)\right] x^s \text{ since } (s-m) + (j) + (m-j) = s$$

$$= \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left[\sum_{m=0}^{\infty} \left(\sum_{k=0}^{\infty} b_j c_{m-j}\right) x^m\right]$$

Theorem 22.2 (continued 2)

Proof (continued).

$$= \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left[\left(\sum_{j=0}^{\infty} b_j x^j\right) \left(\sum_{k=0}^{\infty} c_k x^k\right)\right] = f(x) \cdot (g(x) \cdot h(x))$$

and R_2 holds. Now for the distribution laws. With the notation above,

$$f(x) \cdot (g(x) + h(x)) = \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left[\left(\sum_{j=0}^{\infty} b_j x^j\right) + \left(\sum_{k=0}^{\infty} a_k x^k\right)\right]$$

$$= \left(\sum_{i=0}^{\infty} a_i x^i\right) \left(\sum_{j=0}^{\infty} (b_j + c_j) x^j\right) = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i (b_{n-i} + c_{n-i})\right) x^n$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} (a_i b_{n-i} + a_i c_{n-i})\right) x^n$$

Theorem 22.2 (continued 2)

Proof (continued).

$$= \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left[\left(\sum_{j=0}^{\infty} b_j x^j\right) \left(\sum_{k=0}^{\infty} c_k x^k\right)\right] = f(x) \cdot (g(x) \cdot h(x))$$

and R_2 holds. Now for the distribution laws. With the notation above,

$$f(x) \cdot (g(x) + h(x)) = \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left[\left(\sum_{j=0}^{\infty} b_j x^j\right) + \left(\sum_{k=0}^{\infty} a_k x^k\right)\right]$$

$$= \left(\sum_{i=0}^{\infty} a_i x^i\right) \left(\sum_{j=0}^{\infty} (b_j + c_j) x^j\right) = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i (b_{n-i} + c_{n-i})\right) x^n$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} (a_i b_{n-i} + a_i c_{n-i})\right) x^n$$

Theorem 22.2 (continued 3)

Proof (continued).

$$= \sum_{n=0}^{\infty} \left[\left(\sum_{i=0}^{n} a_i b_{n-i} \right) + \left(\sum_{i=0}^{n} a_i c_{n-i} \right) \right] x^n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i b_{n-i} \right) x^n + \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} a_i c_{n-i} \right) x^n$$

$$= \left(\sum_{i=0}^{\infty} a_i x^i \right) \left(\sum_{j=0}^{\infty} b_j x^j \right) + \left(\sum_{i=0}^{n} a_i x^i \right) \left(\sum_{n=0}^{\infty} c_n x^n \right)$$

$$= f(x) \cdot g(x) + f(x) \cdot h(x) 0.$$

Similarly,

$$(f(x) + g(x)) \cdot h(x) = \left[\left(\sum_{i=0}^{\infty} a_i x^i \right) + \left(\sum_{j=0}^{\infty} b_j x^j \right) \right] \cdot \left(\sum_{n=0}^{\infty} c_n x^n \right)$$

Theorem 22.2 (continued 3)

Proof (continued).

$$= \sum_{n=0}^{\infty} \left[\left(\sum_{i=0}^{n} a_i b_{n-i} \right) + \left(\sum_{i=0}^{n} a_i c_{n-i} \right) \right] x^n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i b_{n-i} \right) x^n + \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} a_i c_{n-i} \right) x^n$$

$$= \left(\sum_{i=0}^{\infty} a_i x^i \right) \left(\sum_{j=0}^{\infty} b_j x^j \right) + \left(\sum_{i=0}^{n} a_i x^i \right) \left(\sum_{n=0}^{\infty} c_n x^n \right)$$

$$= f(x) \cdot g(x) + f(x) \cdot h(x) 0.$$

Similarly,

$$(f(x) + g(x)) \cdot h(x) = \left[\left(\sum_{i=0}^{\infty} a_i x^i \right) + \left(\sum_{j=0}^{\infty} b_j x^j \right) \right] \cdot \left(\sum_{n=0}^{\infty} c_n x^n \right)$$

Theorem 22.2 (continued 4)

Proof (continued).

$$= \left(\sum_{n=0}^{\infty} (a_i + b_i) x^i\right) \cdot \left(\sum_{n=0}^{\infty} c_j x^j\right) = \sum_{n=0}^{\infty} \left(\sum_{i=0}^n (a_i + b_i) c_{n-i}\right) x^n$$

$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} (a_i c_{n-i} + b_i c_{n-i})\right) x^n$$

$$= \sum_{n=0}^{\infty} \left[\left(\sum_{i=0}^{\infty} a_i c_{n-i}\right) + \left(\sum_{i=0}^n b_i c_{n-i}\right) \right] x^n$$

$$= \left(\sum_{n=0}^{\infty} a_i x^n\right) x^n + \sum_{n=0}^{\infty} \left(\sum_{i=0}^n b_i c_{n-i}\right) x^n$$

$$= \left(\sum_{i=0}^{\infty} a_i x^n\right) \left(\sum_{n=0}^{\infty} c_n x^n\right) + \left(\sum_{j=0}^{\infty} b_j x^j\right) \left(\sum_{n=0}^{\infty} c_n x^n\right)$$

$$= f(x) \cdot h(x) + g(x) \cdot h(x).$$

Theorem 22.2 (continued 5)

Proof (continued). So the left and right distribution laws hold (R_3) and R[x] is a ring, A claimed. If R is commutative, then

$$f(x) \cdot g(x) = \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left(\sum_{j=0}^{\infty} b_j x^j\right) = \sum_{n=0}^{\infty} \left(\sum_{i=1}^n a_i b_{n-i}\right) x^n$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=1}^n b_{n-i} a_i\right) x^n = \sum_{n=0}^{\infty} \left(\sum_{i=1}^n b_i a_{n-i}\right) x^n$$
$$= \left(\sum_{j=0}^{\infty} b_j x^j\right) \cdot \left(\sum_{i=1}^{\infty} a_i x^i\right) = g(x) \cdot f(x)$$

and R[x] is commutative, as claimed.

Theorem 22.2 (continued 5)

Proof (continued). So the left and right distribution laws hold (R_3) and R[x] is a ring, A claimed. If R is commutative, then

$$f(x) \cdot g(x) = \left(\sum_{i=0}^{\infty} a_i x^i\right) \cdot \left(\sum_{j=0}^{\infty} b_j x^j\right) = \sum_{n=0}^{\infty} \left(\sum_{i=1}^n a_i b_{n-i}\right) x^n$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=1}^n b_{n-i} a_i\right) x^n = \sum_{n=0}^{\infty} \left(\sum_{i=1}^n b_i a_{n-i}\right) x^n$$
$$= \left(\sum_{j=0}^{\infty} b_j x^j\right) \cdot \left(\sum_{i=1}^{\infty} a_i x^i\right) = g(x) \cdot f(x)$$

and R[x] is commutative, as claimed.

Theorem 22.2 (continued 6).

Proof (continued). If $1 \neq 0$ is unity in R[x], then

$$1 \cdot g(x) = \left(\sum_{i=0}^{n} a_i x^i\right) \cdot \left(\sum_{j=0}^{\infty} b_j x^j\right) \text{ where } a_0 = 1, a_i = 0 \text{ for } i \in \mathbb{N}$$
$$= \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i b_{n-i}\right) x^n = \sum_{n=0}^{\infty} (a_0 b_n) x^n$$
$$= \sum_{n=0}^{\infty} (1b_n) x^n = \sum_{n=0}^{\infty} b_n x^n = g(x),$$

and similarly $g(x) \cdot 1 = g(x)$. So the constant polynomial $1 \in R[x]$ is unity in R[x], as claimed.

Theorem 22.4 The Evaluation Homomorphism for Field Theory.

Theorem 22.4. The Evaluation Homomorphism for Field Theory. Let *F* be a subfield of a field *E*, let $\alpha \in E$, and let *x* be an indeterminate. The map $\varphi_{\alpha} : F[x] \to E$ defined by $\varphi_{\alpha} (a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n$ where $a_0 + a_1x + a_2x^2 + \dots + a_nx^n \in F[x]$ is a homomorphism of F[x] into *E*. Also, $\varphi_{\alpha} (x) = \alpha$, and φ_{α} maps *F* isomorphically by the identity map; that is, $\varphi_{\alpha} = a$ for $a \in F$. The homomorphism φ_{α} is the evaluation at α .

Proof. Let
$$f(x)$$
, $g(x)$, $h(x) \in F[x]$ where
 $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$,
 $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$, and
 $h(x) = f(x) + g(x) = c_0 + c_1x + c_2x^2 + \dots + c_rx^r$ where $c_i = a_i + b_i$ for
all *i*, and $r = \max\{n, m\}$.

Theorem 22.4 The Evaluation Homomorphism for Field Theory.

Theorem 22.4. The Evaluation Homomorphism for Field Theory. Let *F* be a subfield of a field *E*, let $\alpha \in E$, and let *x* be an indeterminate. The map $\varphi_{\alpha} : F[x] \to E$ defined by $\varphi_{\alpha} (a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n$ where $a_0 + a_1x + a_2x^2 + \dots + a_nx^n \in F[x]$ is a homomorphism of F[x] into *E*. Also, $\varphi_{\alpha} (x) = \alpha$, and φ_{α} maps *F* isomorphically by the identity map; that is, $\varphi_{\alpha} = a$ for $a \in F$. The homomorphism φ_{α} is the evaluation at α .

Proof. Let
$$f(x), g(x), h(x) \in F[x]$$
 where
 $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$,
 $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$, and
 $h(x) = f(x) + g(x) = c_0 + c_1x + c_2x^2 + \dots + c_rx^r$ where $c_i = a_i + b_i$ for
all *i*, and $r = \max\{n, m\}$.

Theorem 22.4 (continued).

Proof (continued). Then $\varphi_{\alpha} = (f(x) + g(x)) = \varphi_{\alpha}(h(x)) = c_0 + c_1\alpha + c_2\alpha^2 + \cdots + c_r\alpha^r$ and $\varphi_{\alpha}(f(x)) + \varphi_{\alpha}(g(x)) = (a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n) =$ $(a_0 + b_0) + (a_1 + b_1) \alpha + (a_2 + b_2) \alpha^2 + \dots + (a_r + b_r) \alpha^r =$ $c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_r \alpha^r = \varphi_{\alpha}(h(x)) = \varphi_{\alpha}(f(x) + g(x))$. Suppose $f(x)g(x) = d_0 + d_1x + d_2x^2 + \dots + d_sx^s$ where $d_j = \sum a_i b_{j-1}$. Then $\varphi_{\alpha}(f(x)g(x)) = d_0 + d_1\alpha + d_2\alpha^2 + \dots + d_s\alpha^s$, where s = m + n, and $\varphi_{\alpha}(f(x))\varphi_{\alpha}(g(x)) =$ $(a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n) \cdot (b_0 + b_1\alpha + b_2\alpha^2 + \dots + b_m\alpha^m) =$ $d_0 + d_1 \alpha + d_2 \alpha^2 + \dots + d_s \alpha^s = \varphi_\alpha (\varphi(x) g(x))$. So φ_α is a homomorphism, as claimed.

Theorem 22.4 (continued).

Proof (continued). Then $\varphi_{\alpha} = (f(x) + g(x)) = \varphi_{\alpha}(h(x)) = c_0 + c_1\alpha + c_2\alpha^2 + \cdots + c_r\alpha^r$ and $\varphi_{\alpha}(f(x)) + \varphi_{\alpha}(g(x)) = (a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n) =$ $(a_0 + b_0) + (a_1 + b_1) \alpha + (a_2 + b_2) \alpha^2 + \dots + (a_r + b_r) \alpha^r =$ $c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_r \alpha^r = \varphi_{\alpha}(h(x)) = \varphi_{\alpha}(f(x) + g(x))$. Suppose $f(x)g(x) = d_0 + d_1x + d_2x^2 + \cdots + d_sx^s$ where $d_j = \sum a_i b_{j-1}$. Then $\varphi_{\alpha}(f(x)g(x)) = d_0 + d_1\alpha + d_2\alpha^2 + \dots + d_s\alpha^s$, where s = m + n, and $\varphi_{\alpha}(f(x))\varphi_{\alpha}(g(x)) =$ $(a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n) \cdot (b_0 + b_1\alpha + b_2\alpha^2 + \dots + b_m\alpha^m) =$ $d_0 + d_1 \alpha + d_2 \alpha^2 + \dots + d_s \alpha^s = \varphi_\alpha (\varphi(x) g(x))$. So φ_α is a homomorphism, as claimed.

By the definition of φ_{α} , we have $\varphi_{\alpha}(x) = x$ and for constant polynomial $a \in F[x], \varphi_{\alpha}(a) = a$ for all $a \in F$ (since F is the set of constant polynomials in F[x]).

Theorem 22.4 (continued).

Proof (continued). Then $\varphi_{\alpha} = (f(x) + g(x)) = \varphi_{\alpha}(h(x)) = c_0 + c_1\alpha + c_2\alpha^2 + \cdots + c_r\alpha^r$ and $\varphi_{\alpha}(f(x)) + \varphi_{\alpha}(g(x)) = (a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n) =$ $(a_0 + b_0) + (a_1 + b_1) \alpha + (a_2 + b_2) \alpha^2 + \dots + (a_r + b_r) \alpha^r =$ $c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_r \alpha^r = \varphi_{\alpha}(h(x)) = \varphi_{\alpha}(f(x) + g(x))$. Suppose $f(x)g(x) = d_0 + d_1x + d_2x^2 + \dots + d_sx^s$ where $d_j = \sum a_i b_{j-1}$. Then $\varphi_{\alpha}(f(x)g(x)) = d_0 + d_1\alpha + d_2\alpha^2 + \dots + d_s\alpha^s$, where s = m + n, and $\varphi_{\alpha}(f(x))\varphi_{\alpha}(g(x)) =$ $(a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n) \cdot (b_0 + b_1\alpha + b_2\alpha^2 + \dots + b_m\alpha^m) =$ $d_0 + d_1 \alpha + d_2 \alpha^2 + \dots + d_s \alpha^s = \varphi_\alpha \left(\varphi(x) g(x)\right)$. So φ_α is a homomorphism, as claimed.

By the definition of φ_{α} , we have $\varphi_{\alpha}(x) = x$ and for constant polynomial $a \in F[x]$, $\varphi_{\alpha}(a) = a$ for all $a \in F$ (since F is the set of constant polynomials in F[x]).

()