Theorem 23.1

Introduction to Modern Algebra Theorem 23.1. Let f (x) = apx" + a,—1x" 1+ -+ + axx® + a1x + ag and

Part IV. Rings and Fields g (X) = mem + bm_]_Xm_l + -+ b2X2 + le + bo be in F [X], with dn
and b, both nonzero and m > 0. Then there are unique polynomials g (x)

IV.23. Factorizations of Polynomials over a Field
and r(x) in F[x] such that f (x) = g (x) g (x) + r (x), where either

// \ r(x) = 0 or the degree of r(x) is less than the degree m of g (x).
_ / Proof. Consider the set S = {f (x) —g(x)s(x)|s(x) € F[x]}. If0e€ S
A First Course In
Abstract A{gebra then there exists s (x) such that f (x) — g (x)s(x) =0, so
JEFS ¥ Flalcin f(x) =g (x)s(x). With g (x) =s(x) and r(x) = 0,the result follows.
/ Otherwise, let r(x) be an element of minimal degree in S. Then
/ f(x) =g (x)g(x)+r(x) for some g (x) € F[x]. To show that the degree
// of r(x) is less than m, suppose r (x) = cixt +ct_1 + -+ cox? + c1x + ¢o,
/ y with ¢; € F and ¢; # 0. ASSUME t > m, then
Ct t—m Ct t—m
] ()-a00e00- (£ ) e 0) = re0-((£) ") ()
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Theorem 23.1 (continued 1) Theorem 23.1 (continued 2).
Proof (continued). The right-hand-side of (x) is of the form
. Ctbmo1 s o ctby 5 ciby ciho Theorem 23.1. Let f (x) = apx" + ap_1x" "1+ -+ + axx? + a1x + ap and
r(X)—(ctx St e B bm>’ g (X) = bmX™ + bp_1x™ 1 4 - 4 byx? + byx + by be in F[x], with a,

and b, both nonzero and m > 0. Then there are unique polynomials g (x)
which is a polynomial of degree t — 1 or less. However, the left-hand-side and r(x) in F[x] such that f (x) = q(x) g (x) + r (x), where either

of (+) can be written in the form f (x) = g (x) [g (x) + 5—;xt‘"’], and this r (x) = 0 or the degree of r(x) is less than the degree m of g (x).
is in S since g (x) + <g—;) xt=™M e F[x] (¢t/bm € F since F is a field).
But this, CONTRADICTS the fact that r (x) is of minimal (positive)
degree in S and is described above. So the assumption that t > m is false,

and hence t < m. That is, r(x) is of degree less than the degree m of
g (x), as claimed. Now to show the uniqueness of g (x) and r(x). If

f(x) =g (x)g1(x) + n(x) and f (x) = g (x) g2 (x) + r2 (x), then
subtracting these we

g(x) (g1 (x) — & (x)) = 2 (x) = (x). ()
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Proof (continued). As above, the remainders r; (x) and r, (x) are either
0 or of degree less than the degree of g (x). So r1 (x) — ra (x) is either 0 or
of degree less than the degree of g (x). These can only hold if

g1 (x) — g (x) = 0; that is, g1 (x) = g2 (x). But then the left-hand-side of
(xx) is 0 and so r; (x) = rp (x). Therefore, r; (x) = r2 (x) and

g1 (x) = g2 (x) and the remainders and quotient functions are unique, as
claimed. O



Corollary 23.3 Factor Theorem

Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element a € F (for F a field) is a
zero of f (x) € F[x] if and only if x = a is a factor of f (x) in F [x].

Proof. Suppose that for a € F, f (a) = 0. By Theorem 23.1, there exists
g (x),r(x) € F[x] such that f (x) = (x — a) g (x) + r (x) where either

r (x) = 0 or the degree of r(x) is less than the degree of g(x) =x — a
(i.e., less than 1). But then r(x) must be a constant function r(x) = ¢
for some c € F. So f (x) = (x — a) g (x) + c. Applying the evaluation
homomorphism ¢, to f (x) gives 0 = f (a) = 0g (x) + ¢ = ¢. So, ¢ =0,
and f (x) = (x — a) g (x). Thatis, (x — a) is a factor of f (x). Now
suppose (x — a) is a factor of f (x) in F [x], where a € F. Then applying
wato f(x)=(x—a)g(x), weget f(a)=0. O
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Corollary 23.6

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group
(F*,-) of a field F, then G is cyclic. In particular, the multiplicative group
of all nonzero elements of a finite field is cyclic.

Proof. Since (F*,-) is abelian, then G is a finite abelian group. So by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
[.11.12) G is isomorphic to a direct product Zy, X Zg, X - -+ X Zdg,,

di = (pi)™, where each d; is a proven of a prime. So each Z, is a cyclic
group of order d; - we use multiplication notation for each since we are
dealing with subgroups of the multiplicative group (F*,-). Let
m=lcm(di,da,...,d;). Then m < did---d,. If aj € Zg;, then af”' =1
(notice d; =0 in Zg,) and a™ =1 (since m =0 in Zg,). So for any a € G,
we have a™ = 1. So every element of G is a zero of x™ — 1 in G [x]. But
G has did> - - - d, elements while x™ — 1 has at most m zeros in F by
Corollary 23.5, so m > did> ... d,. Therefore m = did - - - d, and the
primes involved in the prime powers dido - - - d, are distinct. By Corollary
11.6, G = Zg, X Zg, X -+ X Zg, is cyclic and isomorphic to Z,. O
Introduction to Modern Algebra July 15, 2023 8 /16

Corollary 23.5

Corollary 23.5

Corollary 23.5. A nonzero polynomial f (x) € F [x] of degree n can have
at most n zeros in a field F.

Proof. By the Factor Theorem, a; € F is a zero of f (x) implies

f(x) = (x — a1) g1 (x) where g (x) is of degree n — 1. A zero ap € F of
g1 (x) then yields a factorization f (x) = (x — a1) (x — a2) g2 (x). Similarly,
we can further factor as f (x) = (x — a1) (x — a2) - - - (x — a,) gr (x) where
gr (x) has no zero in F. Since f (x) is of degree n, then r < n. If be F
and b## a; for i=1,2,... r then
f(b)=(b—a1)(b—a2)---(b—x)q,(b) # 0 since none of b — a; is
zero, gr (b) # 0 by construction of g,, and F has no zero divisors (F is a
field). So the a; for i =1,2,...,r are all of the zeros of f (x) and so f (x)
has at most n zeros in F (because r < n), as claimed. O
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Theorem 23.10

Theorem 23.10

Theorem 23.10. Let f (x) € F [x], and let f (x) be of degree 2 or 3.
Then £ (x) is reducible over F if and only if it has a zero in F.

Proof. If f (x) is reducible then f (x) = g (x) h(x) where the degrees of
g (x) and h(x) are both less than the degree of f (x). Since the degree of
f (x) is 2 or 3, then the degree of either g (x) or h(x) must be 1. The
factor of degree 1 yields a zero of 7 (x) in F, as claimed.

If f(a) =0 for a € F, then x — a is a factor of f (x) (by the Factor
Theorem), as claimed. O
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Corollary 23.12

Corollary 23.12. If f (x) = x" + a, 1x" 1+ -+ a1x + ag is in Z[x]
with ag # 0 and if f (x) has a zero in Q, then it has a zero m in Z, and m
must divide ap.

Proof. If (x) has a zero a € Q, then by the Factor Theorem, x — ais a
factor of f (x). By Theorem 23.11, f (x) has a factorization in Z[x] also
involving a linear term (x — m) for some m € Z:
f(x)=(x—m)(x"1+.--—2) So ag/m € Z and m divides aq. O
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15 (continued)

Theorem 23.15. Let p € Z be a prime. Suppose

f(x)=anx"+ -+ axx®+ a;x + ap € Z[x], and a, % 0(mod p), but
a; = 0(mod p) and for all i < n, with ag # 0 (mod p?). Then f (x) is
irreducible over Q.

Proof (continued). Since neither by nor ¢, are congruent to 0 modulo p,
while ¢m—1, ¢m—2, ..., ¢ are all congruent to 0 modulo p implies that

amZ0 (mod pz), which implies that ¢, # 0 and so s = n and r = 0. But
this contradicts the property that s < n. Therefore f (x) is irreducible over
7 and therefore over QQ, as claimed. OJ
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let p € Z be a prime. Suppose

f(x)=apx" + -+ axx® +aix + ag € Z|[x], and a, # 0(mod p), but

ai = 0(mod p) and for all i < n, with ag # 0 (mod p?). Then f (x) is
irreducible over Q.

Proof. By Theorem 23.11, it is sufficient to show that f (x) is irreducible
over Z. Assume

f(x)=(bx"+--+ box? + by x + bo) (csx® + -+ ox? + cix + )

is a factorization in Z [x] with b, # 0, ¢s # 0, r,s < n. Since

ap = bocy £ 0 (mod p2) then by and ¢y are not both congruent to 0
modulo p. WLOG, suppose by # 0 (mod p) and ¢y # 0(mod p) since

ap = bpcp = 0 (mod p). Now a, # 0(mod p) implies that

b,,cs #Z 0(mod p) since a, = b,cs. Let m be the smallest value of k such
that ¢, # 0(mod p). Then

bmco ifr>m
am = boCm + b1cm—1+--- + o
m = 20&m 7 F1Em—1 b.cm_r ifr<m.
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Corollary 23.17

Corollary 23.17

Corollary 23.17. The polynomial

_xp—l

b (x) = =xPh 4 xP 2 P x 1

x—1
is irreducible over Q for any prime p.

Proof. By Theorem 23.11, it is sufficient to show that ®,(x) is irreducible
over Z. Applying

(x+1)P -1
1 (P = o )=>—"—"—
Oxr1 ( P(X)) P(X+ ) (x+1)—1
P4 (D) 4+ A (P)xP7" 4 4 px
— (1) ( ) = g(x).
X
The coefficient of xP~" in the numerator (’r’) = r!(pp—i)! and is divisible by

p for 0 < r < p since p divides neither r! nor (p — r)! for 0 < r < p.

Introduction to Modern Algebra July 15, 2023 13 / 16



Corollary 23.17 (continued) Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial
f(x) € F[x] can be factored in F[x] into a product of irreducible
b, (x) = xP—1 N N ST SR polynomials, the irreducible polynomials being unique except for order and
P x—1 for unit (that is, nonzero constant) factors in F.

Corollary 23.17. The polynomial

is irreducible over Q for any prime p. Proof. Let f (x) € F [x] be a nonconstant polynomial. If f (x) is reducible
then f (x) = g (x) h(x) with the degrees of g (x) and h(x) both less than

Proof (continued). So the degree of f (x) by the definition of irreducible. If f (x) and g (x) are

. p . p o both irreducible, we are done. Otherwise, we can factor them into
g(x)=x""+ (2)Xp +ot <r>Xp T tp polynomials of lower degree. Continuing the process, we arrive at
factorization f (x) = p1 (x) p2 (x) - - - pr (x) where each p; (x),
satisfies the Eisenstein Criterion for prime p. Therefore g (x) is irreducible i=1,2,...,r, is irreducible, as claimed.

over Q. ASSUME &, (x) = h(x) r (x) is a nontrivial factorization of g (x)
in Z[x]. Then ®,(x+1) =g (x) = h(x+ 1) r(x+ 1) is a nontrivial

factorization of g (x) in Z[x], a CONTRADICTION. Therefore ¢, (x) is f(x)=p1(x)p2(x)--pr(x)=q1(x)g2(x) - qs(x)
irreducible over Z and also Q. ]

Now to show uniqueness. Suppose

are two factorizations of f (x) into irreducible polynomials.

et o e i A July 15,2003 14/ 16 et o e i G Jily 15,2003 15/ 16

Theorem 23.20 (continued)

Theorem 23.20. If F is a field, then every nonconstant polynomial

f(x) € F[x] can be factored in F[x] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F.

Proof (continued). Then by Corollary 23.19, p; (x) divides some g, let
us assume g (x). Since g1 (x) is irreducible, then g1 (x) = u1p1 (x) where
ur # 0 and so uy is an unit in field F. So p1 (x) p2 (x) - - - pr (x)

= u1p1 (x) g2 (x) - - - gs. Since F has no zero divisors, then F [x] has no
zero divisors by Theorem 22.2, so cancellation holds and we have

p2 (x) -+ pr(x) = u1g2 (x) - - - gs (x). Similarly, p; (x) divides g; (x) for
i=1,2,...;randsol=wu---u, € F.Sos=rand1=uy,u,...,u,.
So the decompositions p1 (x) p2 (x) - - pr (x) and g1 (x) g2 (x) - - - gs (x)
are the same, except for the order in which polynomials are written and
the possible presence of unit factors, as claimed. O
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