Introduction to Modern Algebra

Part IV. Rings and Fields
IV.23. Factorizations of Polynomials over a Field
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Theorem 23.1

Theorem 23.1

Theorem 23.1. Let f (x) = apx" 4+ a,_1x" "1+ -+ ax? + a1x + ap and
g (X) = byx™ + by_1x™ L+ - + byx? + byx + by be in F[x], with aj,
and b, both nonzero and m > 0. Then there are unique polynomials g (x)
and r(x) in F[x] such that f (x) = g (x) g (x) + r (x), where either

r(x) = 0 or the degree of r(x) is less than the degree m of g (x).
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Theorem 23.1

Theorem 23.1. Let f (x) = apx" 4+ a,_1x" "1+ -+ ax? + a1x + ap and
g (X) = byx™ + by_1x™ L+ - + byx? + byx + by be in F[x], with aj,
and b, both nonzero and m > 0. Then there are unique polynomials g (x)
and r(x) in F[x] such that f (x) = g (x) g (x) + r (x), where either

r(x) = 0 or the degree of r(x) is less than the degree m of g (x).

Proof. Consider the set S = {f (x) —g(x)s(x) |s(x) € F[x]}. If0€ S
then there exists s (x) such that f (x) — g (x)s(x) =0, so

f(x) =g (x)s(x). With g(x) =s(x) and r (x) = 0,the result follows.
Otherwise, let r (x) be an element of minimal degree in S. Then

f(x) =g (x)g(x)+ r(x) for some g (x) € F [x].
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Theorem 23.1

Theorem 23.1. Let f (x) = apx" 4+ a,_1x" "1+ -+ ax? + a1x + ap and
g (X) = byx™ + by_1x™ L+ - + byx? + byx + by be in F[x], with aj,
and b, both nonzero and m > 0. Then there are unique polynomials g (x)
and r (x) in F [x] such that f (x) = q(x) g (x) + r (x), where either

r(x) = 0 or the degree of r(x) is less than the degree m of g (x).

Proof. Consider the set S = {f (x) —g(x)s(x) |s(x) € F[x]}. If0€ S
then there exists s (x) such that f (x) — g (x)s(x) =0, so

f(x) =g (x)s(x). With g(x) =s(x) and r (x) = 0,the result follows.
Otherwise, let r (x) be an element of minimal degree in S. Then

f(x) =g (x)g(x)+ r(x) for some g (x) € F[x]. To show that the degree
of r(x) is less than m, suppose r (x) = cixt +c;_1+- -+ cax? + c1x + co,
with ¢; € F and ¢; # 0. ASSUME t > m, then

()-ala- (55 ) < me () == (5 ) ¢ e ) - ¢
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Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of (x) is of the form

bm— b b b
00— (et 4 Stz Sl G G

bm bm bm bm
which is a polynomial of degree t — 1 or less. However, the left-hand-side
of () can be written in the form f (x) = g (x) |g (x) + g—;xt_m}, and this

is in S since g (x) + (b%,) xt=™ e F[x] (c¢t/bm € F since F is a field).
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Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of (x) is of the form

bm— b b b
00— (et 4 Stz Sl G G

bm bm bm bm

which is a polynomial of degree t — 1 or less. However, the left-hand-side
of () can be written in the form f (x) = g (x) |g (x) + g—;xt_m}, and this

is in S since g (x) + (b%,) xt=™ e F[x] (c¢t/bm € F since F is a field).
But this, CONTRADICTS the fact that r (x) is of minimal (positive)
degree in S and is described above. So the assumption that t > m is false,
and hence t < m. That is, r(x) is of degree less than the degree m of

g (x), as claimed.
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Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of (x) is of the form

bm— b b b
00— (et 4 Stz Sl G G

bm bm bm " bm

which is a polynomial of degree t — 1 or less. However, the left-hand-side
of () can be written in the form f (x) = g (x) |g (x) + lf—:nxt_m}, and this

is in S since g (x) + (;—fn) xt=™ e F[x] (c¢t/bm € F since F is a field).
But this, CONTRADICTS the fact that r (x) is of minimal (positive)
degree in S and is described above. So the assumption that t > m is false,
and hence t < m. That is, r(x) is of degree less than the degree m of

g (x), as claimed. Now to show the uniqueness of g (x) and r(x). If

f(x) =g (x) g1 (x) + ri(x) and  (x) = g (x) g2 (x) + r2(x), then
subtracting these we

g (x) (g1 (x) — & (x)) = 2 (x) = (x). ()
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Theorem 23.1 (continued 2).

Theorem 23.1. Let f (x) = apx" +ap_1x" 14 + apx? + a1 x + ap and
g (X) = bX™ + bm_1x™ 1 - 4 byx® + byx + bg be in F[x], with a,
and b, both nonzero and m > 0. Then there are unique polynomials g (x)
and r (x) in F[x] such that f (x) = g (x) g (x) + r (x), where either

r(x) = 0 or the degree of r(x) is less than the degree m of g (x).

Proof (continued). As above, the remainders r; (x) and rp (x) are either
0 or of degree less than the degree of g (x). So r (x) — rz (x) is either 0 or
of degree less than the degree of g (x). These can only hold if

g1 (x) — g2 (x) =0; that is, g1 (x) = g2 (x). But then the left-hand-side of
(*x) is 0 and so r; (x) = r2 (x). Therefore, r; (x) = r» (x) and

g1 (x) = g2 (x) and the remainders and quotient functions are unique, as
claimed. O]
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Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element a € F (for F a field) is a
zero of f (x) € F[x] if and only if x = a is a factor of f (x) in F [x].
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Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element a € F (for F a field) is a
zero of f (x) € F[x] if and only if x = a is a factor of f (x) in F [x].

Proof. Suppose that for a € F, f (a) = 0. By Theorem 23.1, there exists
g (x),r(x) € F[x] such that f (x) = (x — a) g (x) + r (x) where either
r(x) = 0 or the degree of r(x) is less than the degree of g (x) =x — a
(i.e., less than 1). But then r(x) must be a constant function r(x) = ¢
for some c € F. So f (x) = (x — a) g (x) + c. Applying the evaluation
homomorphism ¢, to f (x) gives 0 = f (a) = 0g (x) + c = c.
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Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element a € F (for F a field) is a
zero of f (x) € F[x] if and only if x = a is a factor of f (x) in F [x].

Proof. Suppose that for a € F, f (a) = 0. By Theorem 23.1, there exists
g (x),r(x) € F[x] such that f (x) = (x — a) g (x) + r (x) where either
r(x) = 0 or the degree of r(x) is less than the degree of g (x) =x — a
(i.e., less than 1). But then r(x) must be a constant function r(x) = ¢
for some c € F. So f (x) = (x — a) g (x) + c. Applying the evaluation
homomorphism ¢, to f (x) gives 0 = f (a) = 0g (x) + ¢ = ¢. So, ¢ =0,
and f (x) = (x —a)g(x). Thatis, (x — a) is a factor of f (x). Now
suppose (x — a) is a factor of f (x) in F[x], where a € F. Then applying
wa to f(x) = (x—a)g(x), we get f(a)=0. O
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Corollary 23.5

Corollary 23.5. A nonzero polynomial f (x) € F [x] of degree n can have
at most n zeros in a field F.
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Corollary 23.5

Corollary 23.5

Corollary 23.5. A nonzero polynomial f (x) € F [x] of degree n can have
at most n zeros in a field F.

Proof. By the Factor Theorem, a; € F is a zero of f (x) implies

f(x) = (x — a1) g1 (x) where g (x) is of degree n — 1. A zero a; € F of
g1 (x) then yields a factorization f (x) = (x — a1) (x — a2) g2 (x).
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Corollary 23.5

Corollary 23.5. A nonzero polynomial f (x) € F [x] of degree n can have
at most n zeros in a field F.

Proof. By the Factor Theorem, a; € F is a zero of f (x) implies

f(x) = (x — a1) g1 (x) where g (x) is of degree n — 1. A zero a; € F of
g1 (x) then yields a factorization f (x) = (x — a1) (x — a2) g2 (x). Similarly,
we can further factor as f (x) = (x — a1) (x — a2) - - - (x — a,) gr (x) where
gr (x) has no zero in F. Since f (x) is of degree n, then r < n. If be F
and b # aj for i =1,2,...,r then

f(b)y=(b—a1)(b—a2) --(b—x/)qr(b) # 0 since none of b — a; is
zero, g, (b) # 0 by construction of g,, and F has no zero divisors (F is a
field). So the a; for i =1,2,...,r are all of the zeros of f (x) and so f (x)

has at most n zeros in F (because r < n), as claimed. O
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Corollary 23.6

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group

(F*,-) of a field F, then G is cyclic. In particular, the multiplicative group
of all nonzero elements of a finite field is cyclic.
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Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group
(F*,-) of a field F, then G is cyclic. In particular, the multiplicative group
of all nonzero elements of a finite field is cyclic.

Proof. Since (F*,-) is abelian, then G is a finite abelian group. So by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
1.11.12) G is isomorphic to a direct product Zg, X Zg, X -+ X Zg,,

d; = (pi)™, where each d; is a proven of a prime. So each Z. is a cyclic
group of order d; - we use multiplication notation for each since we are
dealing with subgroups of the multiplicative group (F*,-).
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Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group
(F*,-) of a field F, then G is cyclic. In particular, the multiplicative group
of all nonzero elements of a finite field is cyclic.

Proof. Since (F*,-) is abelian, then G is a finite abelian group. So by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
1.11.12) G is isomorphic to a direct product Zg, X Zg, X -+ X Zg,,

d; = (pi)™, where each d; is a proven of a prime. So each Z. is a cyclic
group of order d; - we use multiplication notation for each since we are
dealing with subgroups of the multiplicative group (F*,-). Let

m=lcm (dy,da, ..., d,). Then m < dyda---d,. If a; € Zg, then a% =1
(notice dj =0 in Zg,) and a =1 (since m=0in Zg,). So for any a € G,
we have a™ = 1. So every element of G is a zero of x™ — 1 in G [x]. But
G has did> - - - d, elements while x™ — 1 has at most m zeros in F by
Corollary 23.5, so m > did> ... dp.
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Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group
(F*,-) of a field F, then G is cyclic. In particular, the multiplicative group
of all nonzero elements of a finite field is cyclic.

Proof. Since (F*,-) is abelian, then G is a finite abelian group. So by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
1.11.12) G is isomorphic to a direct product Zg, X Zg, X -+ X Zg,,
d; = (pi)™, where each d; is a proven of a prime. So each Z. is a cyclic
group of order d; - we use multiplication notation for each since we are
dealing with subgroups of the multiplicative group (F*,-). Let
m=lcm (dy,da, ..., d,). Then m < dyda---d,. If a; € Zg, then a% =1
(notice dj =0 in Zg,) and a =1 (since m=0in Zg,). So for any a € G,
we have a™ = 1. So every element of G is a zero of x™ — 1 in G [x]. But
G has did> - - - d, elements while x™ — 1 has at most m zeros in F by
Corollary 23.5, so m > did> ... d,. Therefore m = did> - - - d, and the
primes involved in the prime powers did> - - - d, are distinct. By Corollary
11.6, G = Zg, X Zg, X - -+ X ZLg, is cyclic and isomorphic to Zp,. L]
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Theorem 23.10

Theorem 23.10. Let f (x) € F[x], and let f (x) be of degree 2 or 3.
Then f (x) is reducible over F if and only if it has a zero in F.
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Theorem 23.10

Theorem 23.10. Let f (x) € F[x], and let f (x) be of degree 2 or 3.
Then f (x) is reducible over F if and only if it has a zero in F.

Proof. If f (x) is reducible then f (x) = g (x) h(x) where the degrees of
g (x) and h(x) are both less than the degree of f (x). Since the degree of
f (x) is 2 or 3, then the degree of either g (x) or h(x) must be 1. The
factor of degree 1 yields a zero of f (x) in F, as claimed.

If f(a) =0 for a € F, then x — a is a factor of f (x) (by the Factor
Theorem), as claimed. O
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Corollary 23.12

Corollary 23.12

Corollary 23.12. If f (x) = x" + a,_1x" 1+ -+ +a;x + ap is in Z[x]

with ag # 0 and if f (x) has a zero in Q, then it has a zero m in Z, and m
must divide ag.
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Corollary 23.12

Corollary 23.12

Corollary 23.12. If f (x) = x" + a,_1x" 1+ -+ +a;x + ap is in Z[x]
with ag # 0 and if f (x) has a zero in Q, then it has a zero m in Z, and m
must divide ag.

Proof. If f(x) has a zero a € Q, then by the Factor Theorem, x — a is a
factor of f (x). By Theorem 23.11, f (x) has a factorization in Z [x] also
involving a linear term (x — m) for some m € Z:

f(x)=(x—m)(x"1+...—2) So ag/m € Z and m divides ap. O
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let p € Z be a prime. Suppose

f(x) = apx"+ -+ ax®>+ a;x + ap € Z[x], and a, # 0(mod p), but
a;i = 0(mod p) and for all i < n, with ag # 0 (mod p?). Then f (x) is
irreducible over Q.
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let p € Z be a prime. Suppose

f(x) = apx"+ -+ ax®>+ a;x + ap € Z[x], and a, # 0(mod p), but
a;i = 0(mod p) and for all i < n, with ag # 0 (mod p?). Then f (x) is
irreducible over Q.

Proof. By Theorem 23.11, it is sufficient to show that f (x) is irreducible
over Z. Assume

f(x) = (bx"+ -+ box® + bix + by) (csx® + -+ + 2x* + c1x + )

is a factorization in Z [x] with b, # 0, ¢s # 0, r,s < n. Since

ag = bpcg £ 0 (mod p2) then by and ¢p are not both congruent to 0
modulo p. WLOG, suppose by # 0 (mod p) and ¢y # 0(mod p) since
ap = bpco =0 (mod p).
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let p € Z be a prime. Suppose

f(x) = apx"+ -+ ax®>+ a;x + ap € Z[x], and a, # 0(mod p), but

a;i = 0(mod p) and for all i < n, with ag # 0 (mod p?). Then f (x) is
irreducible over Q.

Proof. By Theorem 23.11, it is sufficient to show that f (x) is irreducible
over Z. Assume

f(x)=(bx"+--+ box? + bix + bo) (csx® + -+ ox’ + ax + @)
is a factorization in Z [x] with b, # 0, ¢s # 0, r,s < n. Since
ag = bpcg £ 0 (mod p2) then by and ¢p are not both congruent to 0
modulo p. WLOG, suppose by # 0 (mod p) and ¢y # 0(mod p) since
ap = boco =0 (mod p). Now a, # 0(mod p) implies that
br, cs # 0 (mod p) since a, = b,cs. Let m be the smallest value of k such
that ¢, # 0(mod p). Then

_ bmco if r>m
am = bocm + brCmg 4+ { bCm_y ifr<m.
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Theorem 23.15 (continued)

Theorem 23.15. Let p € Z be a prime. Suppose

f(x) = apx"+ -+ ax®>+ a;x + ag € Z[x], and a, # 0(mod p), but
ai = 0(mod p) and for all i < n, with ag # 0 (mod p?). Then f (x) is
irreducible over Q.

Proof (continued). Since neither by nor ¢y, are congruent to 0 modulo p,
while ¢m—1, Cm—2, ...,y are all congruent to 0 modulo p implies that

am Z0 (mod pz), which implies that ¢, #2 0 and so s = n and r = 0. But
this contradicts the property that s < n. Therefore f (x) is irreducible over
Z and therefore over Q, as claimed. O
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Corollary 23.17

Corollary 23.17. The polynomial

xP -1
Py (x) = 1 =xP7lpxP2 4

is irreducible over Q for any prime p.
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Corollary 23.17

Corollary 23.17

Corollary 23.17. The polynomial

o xP—1

Pp(x) = =TT

is irreducible over Q for any prime p.

Proof. By Theorem 23.11, it is sufficient to show that ®,(x) is irreducible
over Z. Applying

@O

The coefficient of xP~" in the numerator (’r’) = #ir)! and is divisible by

p for 0 < r < p since p divides neither r! nor (p — r)! for 0 < r < p.
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Corollary 23.17

Corollary 23.17 (continued)

Corollary 23.17. The polynomial

P_1
¢p(x):’;_1 =xP T 4 xP 2 x4 1

is irreducible over QQ for any prime p.

Proof (continued). So

g(x):XP—1+<'[2)>XP—2+...+<l:>XP—r—1+...+p

satisfies the Eisenstein Criterion for prime p. Therefore g (x) is irreducible
over Q.
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Corollary 23.17 (continued)

Corollary 23.17. The polynomial

P_1
¢p(x):’;_1 =xP T 4 xP 2 x4 1

is irreducible over QQ for any prime p.

Proof (continued). So

g(x):XP—1+<'[2)>XP—2+...+<l:>XP—r—1+...+p

satisfies the Eisenstein Criterion for prime p. Therefore g (x) is irreducible
over Q. ASSUME &, (x) = h(x)r(x) is a nontrivial factorization of g (x)
in Z[x]. Then ®,(x+1) =g (x) = h(x+ 1) r(x+ 1) is a nontrivial
factorization of g (x) in Z[x], a CONTRADICTION. Therefore &, (x) is

irreducible over Z and also Q. ]
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Theorem 23.20

Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial
f(x) € F[x] can be factored in F[x] into a product of irreducible

polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F.
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Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial

f(x) € F[x] can be factored in F[x] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F.

Proof. Let f (x) € F [x] be a nonconstant polynomial. If f (x) is reducible
then f (x) = g (x) h(x) with the degrees of g (x) and h(x) both less than
the degree of f (x) by the definition of irreducible. If f (x) and g (x) are
both irreducible, we are done. Otherwise, we can factor them into
polynomials of lower degree. Continuing the process, we arrive at
factorization f (x) = p1 (x) p2 (x) - - - pr (x) where each p; (x),
i=1,2,...,r, is irreducible, as claimed.
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Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial

f(x) € F[x] can be factored in F[x] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F.

Proof. Let f (x) € F [x] be a nonconstant polynomial. If f (x) is reducible
then f (x) = g (x) h(x) with the degrees of g (x) and h(x) both less than
the degree of f (x) by the definition of irreducible. If f (x) and g (x) are
both irreducible, we are done. Otherwise, we can factor them into
polynomials of lower degree. Continuing the process, we arrive at
factorization f (x) = p1 (x) p2 (x) - - - pr (x) where each p; (x),
i=1,2,...,r, is irreducible, as claimed.

Now to show uniqueness. Suppose
f(x)=p1(x)p2(x) - pr(x) = q1(x) g2 (x) -~ gs (x)

are two factorizations of f (x) into irreducible polynomials.
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Theorem 23.20 (continued)

Theorem 23.20. If F is a field, then every nonconstant polynomial

f(x) € F[x] can be factored in F[x] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F.

Proof (continued). Then by Corollary 23.19, p; (x) divides some g;, let
us assume qi (x). Since g1 (x) is irreducible, then g1 (x) = u1p1 (x) where
u1 # 0 and so uy is an unit in field F. So p1 (x) p2 (x) - pr (x)

= u1p1 (x) g2 (x) - - gs. Since F has no zero divisors, then F [x] has no
zero divisors by Theorem 22.2, so cancellation holds and we have

P2 (x) -+ pr (x) = 12 (x) -+~ s ().
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Theorem 23.20 (continued)

Theorem 23.20. If F is a field, then every nonconstant polynomial

f(x) € F[x] can be factored in F[x] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F.

Proof (continued). Then by Corollary 23.19, p; (x) divides some g;, let
us assume qi (x). Since g1 (x) is irreducible, then g1 (x) = u1p1 (x) where
u1 # 0 and so uy is an unit in field F. So p1 (x) p2 (x) - pr (x)

= u1p1 (x) g2 (x) - - gs. Since F has no zero divisors, then F [x] has no
zero divisors by Theorem 22.2, so cancellation holds and we have

p2 (x) -+ pr(x) = u1G2(x) - - gs (x). Similarly, pi (x) divides g; (x) for
i=12,...,randsol=ujur---u, € F. Sos=rand 1 =uy,u,...,u.
So the decompositions p1 (x) p2 (x) -+ pr (x) and g1 (x) g2 (x) - - - gs (x)
are the same, except for the order in which polynomials are written and
the possible presence of unit factors, as claimed. []
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