Introduction to Modern Algebra

Part IV. Rings and Fields

IV.23. Factorizations of Polynomials over a Field

Table of contents

(1) Theorem 23.1
(2) Corollary 23.3 Factor Theorem
(3) Corollary 23.5
(4) Corollary 23.6
(5) Theorem 23.10
(6) Corollary 23.12
(7) Theorem 23.15. Eisenstein Criterion
(8) Corollary 23.17
(9) Theorem 23.20

Theorem 23.1

Theorem 23.1. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}$ be in $F[x]$, with a_{n} and b_{n} both nonzero and $m>0$. Then there are unique polynomials $g(x)$ and $r(x)$ in $F[x]$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or the degree of $r(x)$ is less than the degree m of $g(x)$.

Proof. Consider the set $S=\{f(x)-g(x) s(x) \mid s(x) \in F[x]\}$. If $0 \in S$ then there exists $s(x)$ such that $f(x)-g(x) s(x)=0$, so $f(x)=g(x) s(x)$. With $g(x)=s(x)$ and $r(x)=0$, the result follows. Otherwise, let $r(x)$ be an element of minimal degree in S. Then $f(x)=g(x) g(x)+r(x)$ for some $g(x) \in F[x]$.

Theorem 23.1

Theorem 23.1. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}$ be in $F[x]$, with a_{n} and b_{n} both nonzero and $m>0$. Then there are unique polynomials $g(x)$ and $r(x)$ in $F[x]$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or the degree of $r(x)$ is less than the degree m of $g(x)$.

Proof. Consider the set $S=\{f(x)-g(x) s(x) \mid s(x) \in F[x]\}$. If $0 \in S$ then there exists $s(x)$ such that $f(x)-g(x) s(x)=0$, so $f(x)=g(x) s(x)$. With $g(x)=s(x)$ and $r(x)=0$, the result follows. Otherwise, let $r(x)$ be an element of minimal degree in S. Then $f(x)=g(x) g(x)+r(x)$ for some $g(x) \in F[x]$. To show that the degree of $r(x)$ is less than m, suppose $r(x)=c_{t} x^{t}+c_{t-1}$ with $c_{j} \in F$ and $c_{t} \neq 0$. ASSUME $t \geq m$, then
$f(x)-q(x) g(x)-\left(\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} g(x)\right)=r(x)-\left(\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} g(x)\right)$

Theorem 23.1

Theorem 23.1. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}$ be in $F[x]$, with a_{n} and b_{n} both nonzero and $m>0$. Then there are unique polynomials $g(x)$ and $r(x)$ in $F[x]$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or the degree of $r(x)$ is less than the degree m of $g(x)$.

Proof. Consider the set $S=\{f(x)-g(x) s(x) \mid s(x) \in F[x]\}$. If $0 \in S$ then there exists $s(x)$ such that $f(x)-g(x) s(x)=0$, so $f(x)=g(x) s(x)$. With $g(x)=s(x)$ and $r(x)=0$, the result follows. Otherwise, let $r(x)$ be an element of minimal degree in S. Then $f(x)=g(x) g(x)+r(x)$ for some $g(x) \in F[x]$. To show that the degree of $r(x)$ is less than m, suppose $r(x)=c_{t} x^{t}+c_{t-1}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}$, with $c_{j} \in F$ and $c_{t} \neq 0$. ASSUME $t \geq m$, then

$$
\begin{equation*}
f(x)-q(x) g(x)-\left(\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} g(x)\right)=r(x)-\left(\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} g(x)\right) . \tag{*}
\end{equation*}
$$

Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of $(*)$ is of the form

$$
r(x)-\left(c_{t} x^{t}+\frac{c_{t} b_{m-1}}{b_{m}} x^{t-2}+\cdots+\frac{c_{t} b_{2}}{b_{m}} x^{2}+\frac{c_{t} b_{1}}{b_{m}} x+\frac{c_{t} b_{0}}{b_{m}}\right)
$$

which is a polynomial of degree $t-1$ or less. However, the left-hand-side of $(*)$ can be written in the form $f(x)=g(x)\left[g(x)+\frac{c_{t}}{b_{m}} x^{t-m}\right]$, and this is in S since $g(x)+\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} \in F[x]\left(c_{t} / b_{m} \in F\right.$ since F is a field $)$.
But this, CONTRADICTS the fact that $r(x)$ is of minimal (positive) degree in S and is described above. So the assumption that $t \geq m$ is false, and hence $t<m$. That is, $r(x)$ is of degree less than the degree m of $g(x)$, as claimed.

Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of $(*)$ is of the form

$$
r(x)-\left(c_{t} x^{t}+\frac{c_{t} b_{m-1}}{b_{m}} x^{t-2}+\cdots+\frac{c_{t} b_{2}}{b_{m}} x^{2}+\frac{c_{t} b_{1}}{b_{m}} x+\frac{c_{t} b_{0}}{b_{m}}\right)
$$

which is a polynomial of degree $t-1$ or less. However, the left-hand-side of $(*)$ can be written in the form $f(x)=g(x)\left[g(x)+\frac{c_{t}}{b_{m}} x^{t-m}\right]$, and this is in S since $g(x)+\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} \in F[x]\left(c_{t} / b_{m} \in F\right.$ since F is a field). But this, CONTRADICTS the fact that $r(x)$ is of minimal (positive) degree in S and is described above. So the assumption that $t \geq m$ is false, and hence $t<m$. That is, $r(x)$ is of degree less than the degree m of $g(x)$, as claimed. Now to show the uniqueness of $g(x)$ and $r(x)$. If
$f(x)=g(x) g_{1}(x)+r_{1}(x)$ and $f(x)=g(x) g_{2}(x)+r_{2}(x)$, then

subtracting these we

$$
g(x)\left(g_{1}(x)-g_{2}(x)\right)=r_{2}(x)-r_{1}(x) . \quad(* *)
$$

Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of $(*)$ is of the form

$$
r(x)-\left(c_{t} x^{t}+\frac{c_{t} b_{m-1}}{b_{m}} x^{t-2}+\cdots+\frac{c_{t} b_{2}}{b_{m}} x^{2}+\frac{c_{t} b_{1}}{b_{m}} x+\frac{c_{t} b_{0}}{b_{m}}\right),
$$

which is a polynomial of degree $t-1$ or less. However, the left-hand-side of $(*)$ can be written in the form $f(x)=g(x)\left[g(x)+\frac{c_{t}}{b_{m}} x^{t-m}\right]$, and this is in S since $g(x)+\left(\frac{c_{t}}{b_{m}}\right) x^{t-m} \in F[x]\left(c_{t} / b_{m} \in F\right.$ since F is a field). But this, CONTRADICTS the fact that $r(x)$ is of minimal (positive) degree in S and is described above. So the assumption that $t \geq m$ is false, and hence $t<m$. That is, $r(x)$ is of degree less than the degree m of $g(x)$, as claimed. Now to show the uniqueness of $g(x)$ and $r(x)$. If $f(x)=g(x) g_{1}(x)+r_{1}(x)$ and $f(x)=g(x) g_{2}(x)+r_{2}(x)$, then subtracting these we

$$
g(x)\left(g_{1}(x)-g_{2}(x)\right)=r_{2}(x)-r_{1}(x) . \quad(* *)
$$

Theorem 23.1 (continued 2).

Theorem 23.1. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}$ be in $F[x]$, with a_{n} and b_{n} both nonzero and $m>0$. Then there are unique polynomials $g(x)$ and $r(x)$ in $F[x]$ such that $f(x)=q(x) g(x)+r(x)$, where either $r(x)=0$ or the degree of $r(x)$ is less than the degree m of $g(x)$.

Proof (continued). As above, the remainders $r_{1}(x)$ and $r_{2}(x)$ are either 0 or of degree less than the degree of $g(x)$. So $r_{1}(x)-r_{2}(x)$ is either 0 or of degree less than the degree of $g(x)$. These can only hold if $g_{1}(x)-g_{2}(x)=0$; that is, $g_{1}(x)=g_{2}(x)$. But then the left-hand-side of $(* *)$ is 0 and so $r_{1}(x)=r_{2}(x)$. Therefore, $r_{1}(x)=r_{2}(x)$ and $g_{1}(x)=g_{2}(x)$ and the remainders and quotient functions are unique, as claimed.

Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element $a \in F$ (for F a field) is a zero of $f(x) \in F[x]$ if and only if $x=a$ is a factor of $f(x)$ in $F[x]$.

Proof. Suppose that for $a \in F, f(a)=0$. By Theorem 23.1, there exists $g(x), r(x) \in F[x]$ such that $f(x)=(x-a) g(x)+r(x)$ where either $r(x)=0$ or the degree of $r(x)$ is less than the degree of $g(x)=x-a$ (i.e., less than 1). But then $r(x)$ must be a constant function $r(x)=c$ for some $c \in F$. So $f(x)=(x-a) g(x)+c$. Applying the evaluation homomorphism φ_{a} to $f(x)$ gives $0=f(a)=0 g(x)+c=c$.

Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element $a \in F$ (for F a field) is a zero of $f(x) \in F[x]$ if and only if $x=a$ is a factor of $f(x)$ in $F[x]$.

Proof. Suppose that for $a \in F, f(a)=0$. By Theorem 23.1, there exists $g(x), r(x) \in F[x]$ such that $f(x)=(x-a) g(x)+r(x)$ where either $r(x)=0$ or the degree of $r(x)$ is less than the degree of $g(x)=x-a$ (i.e., less than 1). But then $r(x)$ must be a constant function $r(x)=c$ for some $c \in F$. So $f(x)=(x-a) g(x)+c$. Applying the evaluation homomorphism φ_{a} to $f(x)$ gives $0=f(a)=0 g(x)+c=c$. So, $c=0$, and $f(x)=(x-a) g(x)$. That is, $(x-a)$ is a factor of $f(x)$. Now suppose $(x-a)$ is a factor of $f(x)$ in $F[x]$, where $a \in F$. Then applying φ_{a} to $f(x)=(x-a) g(x)$, we get $f(a)=0$.

Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element $a \in F$ (for F a field) is a zero of $f(x) \in F[x]$ if and only if $x=a$ is a factor of $f(x)$ in $F[x]$.

Proof. Suppose that for $a \in F, f(a)=0$. By Theorem 23.1, there exists $g(x), r(x) \in F[x]$ such that $f(x)=(x-a) g(x)+r(x)$ where either $r(x)=0$ or the degree of $r(x)$ is less than the degree of $g(x)=x-a$ (i.e., less than 1). But then $r(x)$ must be a constant function $r(x)=c$ for some $c \in F$. So $f(x)=(x-a) g(x)+c$. Applying the evaluation homomorphism φ_{a} to $f(x)$ gives $0=f(a)=0 g(x)+c=c$. So, $c=0$, and $f(x)=(x-a) g(x)$. That is, $(x-a)$ is a factor of $f(x)$. Now suppose $(x-a)$ is a factor of $f(x)$ in $F[x]$, where $a \in F$. Then applying φ_{a} to $f(x)=(x-a) g(x)$, we get $f(a)=0$.

Corollary 23.5

Corollary 23.5. A nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

Proof. By the Factor Theorem, $a_{1} \in F$ is a zero of $f(x)$ implies $f(x)=\left(x-a_{1}\right) g_{1}(x)$ where $g(x)$ is of degree $n-1$. A zero $a_{2} \in F$ of $g_{1}(x)$ then yields a factorization $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) g_{2}(x)$.

Corollary 23.5

Corollary 23.5. A nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

Proof. By the Factor Theorem, $a_{1} \in F$ is a zero of $f(x)$ implies $f(x)=\left(x-a_{1}\right) g_{1}(x)$ where $g(x)$ is of degree $n-1$. A zero $a_{2} \in F$ of $g_{1}(x)$ then yields a factorization $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) g_{2}(x)$. Similarly, we can further factor as $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right) q_{r}(x)$ where $q_{r}(x)$ has no zero in F. Since $f(x)$ is of degree n, then $r \leq n$. If $b \in F$ and $b \neq a_{i}$ for $i=1,2, \ldots, r$ then
$f(b)=\left(b-a_{1}\right)\left(b-a_{2}\right) \cdots\left(b-x_{r}\right) q_{r}(b) \neq 0$ since none of $b-a_{i}$ is zero, $g_{r}(b) \neq 0$ by construction of q_{r}, and F has no zero divisors (F is a field). So the a_{i} for $i=1,2, \ldots, r$ are all of the zeros of $f(x)$ and so $f(x)$ has at most n zeros in F (because $r \leq n$), as claimed.

Corollary 23.5

Corollary 23.5. A nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

Proof. By the Factor Theorem, $a_{1} \in F$ is a zero of $f(x)$ implies $f(x)=\left(x-a_{1}\right) g_{1}(x)$ where $g(x)$ is of degree $n-1$. A zero $a_{2} \in F$ of $g_{1}(x)$ then yields a factorization $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) g_{2}(x)$. Similarly, we can further factor as $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{r}\right) q_{r}(x)$ where $q_{r}(x)$ has no zero in F. Since $f(x)$ is of degree n, then $r \leq n$. If $b \in F$ and $b \neq a_{i}$ for $i=1,2, \ldots, r$ then
$f(b)=\left(b-a_{1}\right)\left(b-a_{2}\right) \cdots\left(b-x_{r}\right) q_{r}(b) \neq 0$ since none of $b-a_{i}$ is zero, $g_{r}(b) \neq 0$ by construction of q_{r}, and F has no zero divisors (F is a field). So the a_{i} for $i=1,2, \ldots, r$ are all of the zeros of $f(x)$ and so $f(x)$ has at most n zeros in F (because $r \leq n$), as claimed.

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of a field F, then G is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic. Proof. Since $\left\langle F^{*}, \cdot\right\rangle$ is abelian, then G is a finite abelian group. So by the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem I.11.12) G is isomorphic to a direct product $\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}}$, $d_{i}=\left(p_{i}\right)^{n_{i}}$, where each d_{i} is a proven of a prime. So each $\mathbb{Z}_{d_{i}}$ is a cyclic group of order d_{i} - we use multiplication notation for each since we are dealing with subgroups of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$.

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of a field F, then G is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.
Proof. Since $\left\langle F^{*}, \cdot\right\rangle$ is abelian, then G is a finite abelian group. So by the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem I.11.12) G is isomorphic to a direct product $\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}}$, $d_{i}=\left(p_{i}\right)^{n_{i}}$, where each d_{i} is a proven of a prime. So each $\mathbb{Z}_{d_{i}}$ is a cyclic group of order d_{i} - we use multiplication notation for each since we are dealing with subgroups of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$.

 we have $a^{m}=1$. So every element of G is a zero of $x^{m}-1$ in $G[x]$. But G has $d_{1} d_{2} \cdots d_{r}$ elements while $x^{m}-1$ has at most m zeros in F by Corollary 23.5 , so $m \geq d_{1} d_{2} \ldots d_{m}$.

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of a field F, then G is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.
Proof. Since $\left\langle F^{*}, \cdot\right\rangle$ is abelian, then G is a finite abelian group. So by the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem I.11.12) G is isomorphic to a direct product $\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}}$, $d_{i}=\left(p_{i}\right)^{n_{i}}$, where each d_{i} is a proven of a prime. So each $\mathbb{Z}_{d_{i}}$ is a cyclic group of order d_{i} - we use multiplication notation for each since we are dealing with subgroups of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$. Let $m=\operatorname{Icm}\left(d_{1}, d_{2}, \ldots, d_{r}\right)$. Then $m \leq d_{1} d_{2} \cdots d_{r}$. If $a_{i} \in \mathbb{Z}_{d_{i}}$ then $a_{i}^{d_{i}}=1$ (notice $d_{i} \equiv 0$ in $\mathbb{Z}_{d_{i}}$) and $a_{i}^{m}=1$ (since $m \equiv 0$ in $\mathbb{Z}_{d_{i}}$). So for any $a \in G$, we have $a^{m}=1$. So every element of G is a zero of $x^{m}-1$ in $G[x]$. But G has $d_{1} d_{2} \cdots d_{r}$ elements while $x^{m}-1$ has at most m zeros in F by Corollary 23.5, so $m \geq d_{1} d_{2} \ldots d_{m}$. Therefore $m=d_{1} d_{2} \ldots d_{r}$ and the primes involved in the prime powers $d_{1} d_{2} \cdots d_{r}$ are distinct. By Corollary

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$ of a field F, then G is cyclic. In particular, the multiplicative group of all nonzero elements of a finite field is cyclic.
Proof. Since $\left\langle F^{*}, \cdot\right\rangle$ is abelian, then G is a finite abelian group. So by the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem I.11.12) G is isomorphic to a direct product $\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}}$, $d_{i}=\left(p_{i}\right)^{n_{i}}$, where each d_{i} is a proven of a prime. So each $\mathbb{Z}_{d_{i}}$ is a cyclic group of order d_{i} - we use multiplication notation for each since we are dealing with subgroups of the multiplicative group $\left\langle F^{*}, \cdot\right\rangle$. Let $m=\operatorname{Icm}\left(d_{1}, d_{2}, \ldots, d_{r}\right)$. Then $m \leq d_{1} d_{2} \cdots d_{r}$. If $a_{i} \in \mathbb{Z}_{d_{i}}$ then $a_{i}^{d_{i}}=1$ (notice $d_{i} \equiv 0$ in $\mathbb{Z}_{d_{i}}$) and $a_{i}^{m}=1$ (since $m \equiv 0$ in $\mathbb{Z}_{d_{i}}$). So for any $a \in G$, we have $a^{m}=1$. So every element of G is a zero of $x^{m}-1$ in $G[x]$. But G has $d_{1} d_{2} \cdots d_{r}$ elements while $x^{m}-1$ has at most m zeros in F by Corollary 23.5, so $m \geq d_{1} d_{2} \ldots d_{m}$. Therefore $m=d_{1} d_{2} \cdots d_{r}$ and the primes involved in the prime powers $d_{1} d_{2} \cdots d_{r}$ are distinct. By Corollary 11.6, $G \cong \mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}}$ is cyclic and isomorphic to \mathbb{Z}_{m}.

Theorem 23.10

Theorem 23.10. Let $f(x) \in F[x]$, and let $f(x)$ be of degree 2 or 3 . Then $f(x)$ is reducible over F if and only if it has a zero in F.

Proof. If $f(x)$ is reducible then $f(x)=g(x) h(x)$ where the degrees of $g(x)$ and $h(x)$ are both less than the degree of $f(x)$. Since the degree of $f(x)$ is 2 or 3 , then the degree of either $g(x)$ or $h(x)$ must be 1 . The factor of degree 1 yields a zero of $f(x)$ in F, as claimed.

If $f(a)=0$ for $a \in F$, then $x-a$ is a factor of $f(x)$ (by the Factor Theorem), as claimed.

Theorem 23.10

Theorem 23.10. Let $f(x) \in F[x]$, and let $f(x)$ be of degree 2 or 3 . Then $f(x)$ is reducible over F if and only if it has a zero in F.

Proof. If $f(x)$ is reducible then $f(x)=g(x) h(x)$ where the degrees of $g(x)$ and $h(x)$ are both less than the degree of $f(x)$. Since the degree of $f(x)$ is 2 or 3 , then the degree of either $g(x)$ or $h(x)$ must be 1 . The factor of degree 1 yields a zero of $f(x)$ in F, as claimed.

If $f(a)=0$ for $a \in F$, then $x-a$ is a factor of $f(x)$ (by the Factor Theorem), as claimed.

Corollary 23.12

Corollary 23.12. If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is in $\mathbb{Z}[x]$ with $a_{0} \neq 0$ and if $f(x)$ has a zero in \mathbb{Q}, then it has a zero m in \mathbb{Z}, and m must divide a_{0}.

Proof. If $f(x)$ has a zero $a \in \mathbb{Q}$, then by the Factor Theorem, $x-a$ is a factor of $f(x)$. By Theorem 23.11, $f(x)$ has a factorization in $\mathbb{Z}[x]$ also involving a linear term $(x-m)$ for some $m \in \mathbb{Z}$: $f(x)=(x-m)\left(x^{n-1}+\cdots-\frac{a_{0}}{m}\right)$. So $a_{0} / m \in \mathbb{Z}$ and m divides a_{0}.

Corollary 23.12

Corollary 23.12. If $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is in $\mathbb{Z}[x]$ with $a_{0} \neq 0$ and if $f(x)$ has a zero in \mathbb{Q}, then it has a zero m in \mathbb{Z}, and m must divide a_{0}.

Proof. If $f(x)$ has a zero $a \in \mathbb{Q}$, then by the Factor Theorem, $x-a$ is a factor of $f(x)$. By Theorem 23.11, $f(x)$ has a factorization in $\mathbb{Z}[x]$ also involving a linear term $(x-m)$ for some $m \in \mathbb{Z}$:
$f(x)=(x-m)\left(x^{n-1}+\cdots-\frac{a_{0}}{m}\right)$. So $a_{0} / m \in \mathbb{Z}$ and m divides a_{0}.

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let $p \in \mathbb{Z}$ be a prime. Suppose $f(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and $a_{n} \not \equiv 0(\bmod p)$, but $a_{i}=0(\bmod p)$ and for all $i<n$, with $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$. Then $f(x)$ is irreducible over \mathbb{Q}.
Proof. By Theorem 23.11, it is sufficient to show that $f(x)$ is irreducible over \mathbb{Z}. Assume

is a factorization in $\mathbb{Z}[x]$ with $b_{r} \neq 0, c_{s} \neq 0, r, s<n$. Since $a_{0}=b_{0} c_{0} \not \equiv 0\left(\bmod p^{2}\right)$ then b_{0} and c_{0} are not both congruent to 0 modulo p. WLOG, suppose $b_{0} \not \equiv 0(\bmod p)$ and $c_{0} \not \equiv 0(\bmod p)$ since $a_{0}=b_{0} c_{0} \equiv 0(\bmod p)$.

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let $p \in \mathbb{Z}$ be a prime. Suppose $f(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and $a_{n} \not \equiv 0(\bmod p)$, but $a_{i}=0(\bmod p)$ and for all $i<n$, with $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$. Then $f(x)$ is irreducible over \mathbb{Q}.
Proof. By Theorem 23.11, it is sufficient to show that $f(x)$ is irreducible over \mathbb{Z}. Assume

$$
f(x)=\left(b_{r} x^{r}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}\right)\left(c_{s} x^{s}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}\right)
$$

is a factorization in $\mathbb{Z}[x]$ with $b_{r} \neq 0, c_{s} \neq 0, r, s<n$. Since $a_{0}=b_{0} c_{0} \not \equiv 0\left(\bmod p^{2}\right)$ then b_{0} and c_{0} are not both congruent to 0 modulo p. WLOG, suppose $b_{0} \not \equiv 0(\bmod p)$ and $c_{0} \not \equiv 0(\bmod p)$ since $a_{0}=b_{0} c_{0} \equiv 0(\bmod p)$. Now $a_{n} \not \equiv 0(\bmod p)$ implies that $b_{r}, c_{s} \not \equiv 0(\bmod p)$ since $a_{n}=b_{r} c_{s}$. Let m be the smallest value of k such that $c_{k} \not \equiv 0(\bmod p)$. Then

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let $p \in \mathbb{Z}$ be a prime. Suppose $f(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and $a_{n} \not \equiv 0(\bmod p)$, but $a_{i}=0(\bmod p)$ and for all $i<n$, with $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$. Then $f(x)$ is irreducible over \mathbb{Q}.
Proof. By Theorem 23.11, it is sufficient to show that $f(x)$ is irreducible over \mathbb{Z}. Assume

$$
f(x)=\left(b_{r} x^{r}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}\right)\left(c_{s} x^{s}+\cdots+c_{2} x^{2}+c_{1} x+c_{0}\right)
$$

is a factorization in $\mathbb{Z}[x]$ with $b_{r} \neq 0, c_{s} \neq 0, r, s<n$. Since $a_{0}=b_{0} c_{0} \not \equiv 0\left(\bmod p^{2}\right)$ then b_{0} and c_{0} are not both congruent to 0 modulo p. WLOG, suppose $b_{0} \not \equiv 0(\bmod p)$ and $c_{0} \not \equiv 0(\bmod p)$ since $a_{0}=b_{0} c_{0} \equiv 0(\bmod p)$. Now $a_{n} \not \equiv 0(\bmod p)$ implies that $b_{r}, c_{s} \not \equiv 0(\bmod p)$ since $a_{n}=b_{r} c_{s}$. Let m be the smallest value of k such that $c_{k} \not \equiv 0(\bmod p)$. Then

$$
a_{m}=b_{0} c_{m}+b_{1} c_{m-1}+\cdots+\left\{\begin{array}{cc}
b_{m} c_{0} & \text { if } r \geq m \\
b_{r} c_{m-r} & \text { if } r<m .
\end{array}\right.
$$

Theorem 23.15 (continued)

Theorem 23.15. Let $p \in \mathbb{Z}$ be a prime. Suppose
$f(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbb{Z}[x]$, and $a_{n} \not \equiv 0(\bmod p)$, but $a_{i}=0(\bmod p)$ and for all $i<n$, with $a_{0} \not \equiv 0\left(\bmod p^{2}\right)$. Then $f(x)$ is irreducible over \mathbb{Q}.

Proof (continued). Since neither b_{0} nor c_{m} are congruent to 0 modulo p, while $c_{m-1}, c_{m-2}, \ldots, c_{0}$ are all congruent to 0 modulo p implies that $a_{m} \not \equiv 0\left(\bmod p^{2}\right)$, which implies that $c_{m} \neq 0$ and so $s=n$ and $r=0$. But this contradicts the property that $s<n$. Therefore $f(x)$ is irreducible over \mathbb{Z} and therefore over \mathbb{Q}, as claimed.

Corollary 23.17

Corollary 23.17. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1
$$

is irreducible over \mathbb{Q} for any prime p.
Proof. By Theorem 23.11, it is sufficient to show that $\Phi_{p}(x)$ is irreducible over \mathbb{Z}. Applying

$$
\begin{aligned}
\varphi_{x+1}\left(\Phi_{p}(x)\right) & =\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{(x+1)-1} \\
& =\frac{x^{p}+\binom{p}{1}+\cdots+\binom{p}{r} x^{p-r}+\cdots+p x}{x} \equiv g(x) .
\end{aligned}
$$

The coefficient of x^{p-v} in the numerator $\binom{p}{r}=\frac{p!}{r!(p-r)!}$ and is divisible by p for $0<r<p$ since p divides neither r ! nor $(p-r)$! for $0<r<p$.

Corollary 23.17

Corollary 23.17. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1
$$

is irreducible over \mathbb{Q} for any prime p.
Proof. By Theorem 23.11, it is sufficient to show that $\Phi_{p}(x)$ is irreducible over \mathbb{Z}. Applying

$$
\begin{aligned}
\varphi_{x+1}\left(\Phi_{p}(x)\right) & =\Phi_{p}(x+1)=\frac{(x+1)^{p}-1}{(x+1)-1} \\
& =\frac{x^{p}+\binom{p}{1}+\cdots+\binom{p}{r} x^{p-r}+\cdots+p x}{x} \equiv g(x) .
\end{aligned}
$$

The coefficient of x^{p-v} in the numerator $\binom{p}{r}=\frac{p!}{r!(p-r)!}$ and is divisible by p for $0<r<p$ since p divides neither r ! nor $(p-r)$! for $0<r<p$.

Corollary 23.17 (continued)

Corollary 23.17. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1
$$

is irreducible over \mathbb{Q} for any prime p.
Proof (continued). So

$$
g(x)=x^{p-1}+\binom{p}{2} x^{p-2}+\cdots+\binom{p}{r} x^{p-r-1}+\cdots+p
$$

satisfies the Eisenstein Criterion for prime p. Therefore $g(x)$ is irreducible over \mathbb{Q}. ASSUME $\Phi_{p}(x)=h(x) r(x)$ is a nontrivial factorization of $g(x)$ in $\mathbb{Z}[x]$. Then $\Phi_{p}(x+1)=g(x)=h(x+1) r(x+1)$ is a nontrivial factorization of $g(x)$ in $\mathbb{Z}[x]$, a CONTRADICTION. Therefore $\Phi_{p}(x)$ is irreducible over \mathbb{Z} and also \mathbb{Q}.

Corollary 23.17 (continued)

Corollary 23.17. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x^{2}+x+1
$$

is irreducible over \mathbb{Q} for any prime p.
Proof (continued). So

$$
g(x)=x^{p-1}+\binom{p}{2} x^{p-2}+\cdots+\binom{p}{r} x^{p-r-1}+\cdots+p
$$

satisfies the Eisenstein Criterion for prime p. Therefore $g(x)$ is irreducible over \mathbb{Q}. ASSUME $\Phi_{p}(x)=h(x) r(x)$ is a nontrivial factorization of $g(x)$ in $\mathbb{Z}[x]$. Then $\Phi_{p}(x+1)=g(x)=h(x+1) r(x+1)$ is a nontrivial factorization of $g(x)$ in $\mathbb{Z}[x]$, a CONTRADICTION. Therefore $\Phi_{p}(x)$ is irreducible over \mathbb{Z} and also \mathbb{Q}.

Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

Proof. Let $f(x) \in F[x]$ be a nonconstant polynomial. If $f(x)$ is reducible then $f(x)=g(x) h(x)$ with the degrees of $g(x)$ and $h(x)$ both less than the degree of $f(x)$ by the definition of irreducible. If $f(x)$ and $g(x)$ are both irreducible, we are done. Otherwise, we can factor them into polynomials of lower degree. Continuing the process, we arrive at factorization $f(x)=p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ where each $p_{i}(x)$, $i=1,2, \ldots, r$, is irreducible, as claimed.

Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

Proof. Let $f(x) \in F[x]$ be a nonconstant polynomial. If $f(x)$ is reducible then $f(x)=g(x) h(x)$ with the degrees of $g(x)$ and $h(x)$ both less than the degree of $f(x)$ by the definition of irreducible. If $f(x)$ and $g(x)$ are both irreducible, we are done. Otherwise, we can factor them into polynomials of lower degree. Continuing the process, we arrive at factorization $f(x)=p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ where each $p_{i}(x)$, $i=1,2, \ldots, r$, is irreducible, as claimed.

Now to show uniqueness. Suppose

$$
f(x)=p_{1}(x) p_{2}(x) \cdots p_{r}(x)=q_{1}(x) q_{2}(x) \cdots q_{s}(x)
$$

are two factorizations of $f(x)$ into irreducible polynomials.

Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

Proof. Let $f(x) \in F[x]$ be a nonconstant polynomial. If $f(x)$ is reducible then $f(x)=g(x) h(x)$ with the degrees of $g(x)$ and $h(x)$ both less than the degree of $f(x)$ by the definition of irreducible. If $f(x)$ and $g(x)$ are both irreducible, we are done. Otherwise, we can factor them into polynomials of lower degree. Continuing the process, we arrive at factorization $f(x)=p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ where each $p_{i}(x)$, $i=1,2, \ldots, r$, is irreducible, as claimed.

Now to show uniqueness. Suppose

$$
f(x)=p_{1}(x) p_{2}(x) \cdots p_{r}(x)=q_{1}(x) q_{2}(x) \cdots q_{s}(x)
$$

are two factorizations of $f(x)$ into irreducible polynomials.

Theorem 23.20 (continued)

Theorem 23.20. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

Proof (continued). Then by Corollary 23.19, $p_{1}(x)$ divides some q_{j}, let us assume $q_{1}(x)$. Since $q_{1}(x)$ is irreducible, then $q_{1}(x)=u_{1} p_{1}(x)$ where $u_{1} \neq 0$ and so u_{1} is an unit in field F. So $p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ $=u_{1} p_{1}(x) q_{2}(x) \cdots q_{s}$. Since F has no zero divisors, then $F[x]$ has no zero divisors by Theorem 22.2, so cancellation holds and we have $p_{2}(x) \cdots p_{r}(x)=u_{1} q_{2}(x) \cdots q_{s}(x)$. Similarly, $p_{i}(x)$ divides $q_{i}(x)$ for $i=1,2, \ldots, r$ and so $1=u_{1} u_{2} \cdots u_{r} \in F$. So $s=r$ and $1=u_{1}, u_{2}, \ldots, u_{r}$ So the decompositions $p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ and $q_{1}(x) q_{2}(x) \cdots q_{s}(x)$ are the same, except for the order in which polynomials are written and the possible presence of unit factors, as claimed.

Theorem 23.20 (continued)

Theorem 23.20. If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

Proof (continued). Then by Corollary 23.19, $p_{1}(x)$ divides some q_{j}, let us assume $q_{1}(x)$. Since $q_{1}(x)$ is irreducible, then $q_{1}(x)=u_{1} p_{1}(x)$ where $u_{1} \neq 0$ and so u_{1} is an unit in field F. So $p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ $=u_{1} p_{1}(x) q_{2}(x) \cdots q_{s}$. Since F has no zero divisors, then $F[x]$ has no zero divisors by Theorem 22.2, so cancellation holds and we have $p_{2}(x) \cdots p_{r}(x)=u_{1} q_{2}(x) \cdots q_{s}(x)$. Similarly, $p_{i}(x)$ divides $q_{i}(x)$ for $i=1,2, \ldots, r$ and so $1=u_{1} u_{2} \cdots u_{r} \in F$. So $s=r$ and $1=u_{1}, u_{2}, \ldots, u_{r}$. So the decompositions $p_{1}(x) p_{2}(x) \cdots p_{r}(x)$ and $q_{1}(x) q_{2}(x) \cdots q_{s}(x)$ are the same, except for the order in which polynomials are written and the possible presence of unit factors, as claimed.

