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Theorem 23.1

Theorem 23.1

Theorem 23.1. Let f (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0 and

g (x) = bmxm + bm−1x
m−1 + · · ·+ b2x

2 + b1x + b0 be in F [x ], with an

and bn both nonzero and m > 0. Then there are unique polynomials g (x)
and r (x) in F [x ] such that f (x) = q (x) g (x) + r (x), where either
r (x) = 0 or the degree of r (x) is less than the degree m of g (x).

Proof. Consider the set S = {f (x)− g (x) s (x) | s (x) ∈ F [x ]}. If 0 ∈ S
then there exists s (x) such that f (x)− g (x) s (x) = 0, so
f (x) = g (x) s (x). With g (x) = s (x) and r (x) = 0,the result follows.
Otherwise, let r (x) be an element of minimal degree in S . Then
f (x) = g (x) g (x) + r (x) for some g (x) ∈ F [x ].

To show that the degree
of r (x) is less than m, suppose r (x) = ctx

t + ct−1 + · · ·+ c2x
2 + c1x + c0,

with cj ∈ F and ct 6= 0. ASSUME t ≥ m, then

f (x)−q(x)g(x)−
((

ct

bm

)
x t−mg (x)

)
= r (x)−

((
ct

bm

)
x t−mg (x)

)
. (∗)
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Theorem 23.1

Theorem 23.1 (continued 1)

Proof (continued). The right-hand-side of (∗) is of the form

r (x)−
(

ctx
t +

ctbm−1

bm
x t−2 + · · ·+ ctb2

bm
x2 +

ctb1

bm
x +

ctb0

bm

)
,

which is a polynomial of degree t − 1 or less. However, the left-hand-side

of (∗) can be written in the form f (x) = g (x)
[
g (x) + ct

bm
x t−m

]
, and this

is in S since g (x) +
(

ct
bm

)
x t−m ∈ F [x ] (ct/bm ∈ F since F is a field).

But this, CONTRADICTS the fact that r (x) is of minimal (positive)
degree in S and is described above. So the assumption that t ≥ m is false,
and hence t < m. That is, r (x) is of degree less than the degree m of
g (x), as claimed.

Now to show the uniqueness of g (x) and r (x). If
f (x) = g (x) g1 (x) + r1 (x) and f (x) = g (x) g2 (x) + r2 (x), then
subtracting these we

g (x) (g1 (x)− g2 (x)) = r2 (x)− r1 (x) . (∗∗)
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Theorem 23.1

Theorem 23.1 (continued 2).

Theorem 23.1. Let f (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0 and

g (x) = bmxm + bm−1x
m−1 + · · ·+ b2x

2 + b1x + b0 be in F [x ], with an

and bn both nonzero and m > 0. Then there are unique polynomials g (x)
and r (x) in F [x ] such that f (x) = q (x) g (x) + r (x), where either
r (x) = 0 or the degree of r (x) is less than the degree m of g (x).

Proof (continued). As above, the remainders r1 (x) and r2 (x) are either
0 or of degree less than the degree of g (x). So r1 (x)− r2 (x) is either 0 or
of degree less than the degree of g (x). These can only hold if
g1 (x)− g2 (x) = 0; that is, g1 (x) = g2 (x). But then the left-hand-side of
(∗∗) is 0 and so r1 (x) = r2 (x). Therefore, r1 (x) = r2 (x) and
g1 (x) = g2 (x) and the remainders and quotient functions are unique, as
claimed.
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Corollary 23.3 Factor Theorem

Corollary 23.3. Factor Theorem

Corollary 23.3. Factor Theorem. An element a ∈ F (for F a field) is a
zero of f (x) ∈ F [x ] if and only if x = a is a factor of f (x) in F [x ].

Proof. Suppose that for a ∈ F , f (a) = 0. By Theorem 23.1, there exists
g (x) , r (x) ∈ F [x ] such that f (x) = (x − a) g (x) + r (x) where either
r (x) = 0 or the degree of r (x) is less than the degree of g (x) = x − a
(i.e., less than 1). But then r (x) must be a constant function r (x) = c
for some c ∈ F . So f (x) = (x − a) g (x) + c . Applying the evaluation
homomorphism ϕa to f (x) gives 0 = f (a) = 0g (x) + c = c .

So, c = 0,
and f (x) = (x − a) g (x). That is, (x − a) is a factor of f (x). Now
suppose (x − a) is a factor of f (x) in F [x ], where a ∈ F . Then applying
ϕa to f (x) = (x − a) g (x), we get f (a) = 0.
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Corollary 23.5

Corollary 23.5

Corollary 23.5. A nonzero polynomial f (x) ∈ F [x ] of degree n can have
at most n zeros in a field F .

Proof. By the Factor Theorem, a1 ∈ F is a zero of f (x) implies
f (x) = (x − a1) g1 (x) where g (x) is of degree n − 1. A zero a2 ∈ F of
g1 (x) then yields a factorization f (x) = (x − a1) (x − a2) g2 (x).

Similarly,
we can further factor as f (x) = (x − a1) (x − a2) · · · (x − ar ) qr (x) where
qr (x) has no zero in F . Since f (x) is of degree n, then r ≤ n. If b ∈ F
and b 6= ai for i = 1, 2, . . . , r then
f (b) = (b − a1) (b − a2) · · · (b − xr ) qr (b) 6= 0 since none of b − ai is
zero, gr (b) 6= 0 by construction of qr , and F has no zero divisors (F is a
field). So the ai for i = 1, 2, . . . , r are all of the zeros of f (x) and so f (x)
has at most n zeros in F (because r ≤ n), as claimed.
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Corollary 23.6

Corollary 23.6

Corollary 23.6. If G is a finite subgroup of the multiplicative group
〈F ∗, ·〉 of a field F , then G is cyclic. In particular, the multiplicative group
of all nonzero elements of a finite field is cyclic.

Proof. Since 〈F ∗, ·〉 is abelian, then G is a finite abelian group. So by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
I.11.12) G is isomorphic to a direct product Zd1 × Zd2 × · · · × Zdr ,
di = (pi )

ni , where each di is a proven of a prime. So each Zdi
is a cyclic

group of order di - we use multiplication notation for each since we are
dealing with subgroups of the multiplicative group 〈F ∗, ·〉.

Let
m = lcm (d1, d2, . . . , dr ). Then m ≤ d1d2 · · · dr . If ai ∈ Zdi

then adi
i = 1

(notice di ≡ 0 in Zdi
) and am

i = 1 (since m ≡ 0 in Zdi
). So for any a ∈ G ,

we have am = 1. So every element of G is a zero of xm − 1 in G [x ]. But
G has d1d2 · · · dr elements while xm − 1 has at most m zeros in F by
Corollary 23.5, so m ≥ d1d2 . . . dm. Therefore m = d1d2 · · · dr and the
primes involved in the prime powers d1d2 · · · dr are distinct. By Corollary
11.6, G ∼= Zd1 × Zd2 × · · · × Zdr is cyclic and isomorphic to Zm.
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Theorem 23.10

Theorem 23.10

Theorem 23.10. Let f (x) ∈ F [x ], and let f (x) be of degree 2 or 3.
Then f (x) is reducible over F if and only if it has a zero in F .

Proof. If f (x) is reducible then f (x) = g (x) h (x) where the degrees of
g (x) and h (x) are both less than the degree of f (x). Since the degree of
f (x) is 2 or 3, then the degree of either g (x) or h (x) must be 1. The
factor of degree 1 yields a zero of f (x) in F , as claimed.

If f (a) = 0 for a ∈ F , then x − a is a factor of f (x) (by the Factor
Theorem), as claimed.
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Corollary 23.12

Corollary 23.12

Corollary 23.12. If f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 is in Z [x ]

with a0 6= 0 and if f (x) has a zero in Q, then it has a zero m in Z, and m
must divide a0.

Proof. If f (x) has a zero a ∈ Q, then by the Factor Theorem, x − a is a
factor of f (x). By Theorem 23.11, f (x) has a factorization in Z [x ] also
involving a linear term (x −m) for some m ∈ Z:
f (x) = (x −m)

(
xn−1 + · · · − a0

m

)
. So a0/m ∈ Z and m divides a0.
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Eisenstein Criterion

Theorem 23.15. Let p ∈ Z be a prime. Suppose
f (x) = anx

n + · · ·+ a2x
2 + a1x + a0 ∈ Z [x ], and an 6≡ 0 (mod p), but

ai = 0 (mod p) and for all i < n, with a0 6≡ 0
(
mod p2

)
. Then f (x) is

irreducible over Q.

Proof. By Theorem 23.11, it is sufficient to show that f (x) is irreducible
over Z. Assume

f (x) =
(
brx

r + · · ·+ b2x
2 + b1x + b0

) (
csx

s + · · ·+ c2x
2 + c1x + c0

)
is a factorization in Z [x ] with br 6= 0, cs 6= 0, r , s < n. Since
a0 = b0c0 6≡ 0

(
mod p2

)
then b0 and c0 are not both congruent to 0

modulo p. WLOG, suppose b0 6≡ 0 (mod p) and c0 6≡ 0 (mod p) since
a0 = b0c0 ≡ 0 (mod p).

Now an 6≡ 0 (mod p) implies that
br , cs 6≡ 0 (mod p) since an = brcs . Let m be the smallest value of k such
that ck 6≡ 0 (mod p). Then

am = b0cm + b1cm−1 + · · ·+
{

bmc0 if r ≥ m
brcm−r if r < m.
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Theorem 23.15. Eisenstein Criterion

Theorem 23.15 (continued)

Theorem 23.15. Let p ∈ Z be a prime. Suppose
f (x) = anx

n + · · ·+ a2x
2 + a1x + a0 ∈ Z [x ], and an 6≡ 0 (mod p), but

ai = 0 (mod p) and for all i < n, with a0 6≡ 0
(
mod p2

)
. Then f (x) is

irreducible over Q.

Proof (continued). Since neither b0 nor cm are congruent to 0 modulo p,
while cm−1, cm−2, . . . , c0 are all congruent to 0 modulo p implies that
am 6≡ 0

(
mod p2

)
, which implies that cm 6= 0 and so s = n and r = 0. But

this contradicts the property that s < n. Therefore f (x) is irreducible over
Z and therefore over Q, as claimed.
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Corollary 23.17

Corollary 23.17. The polynomial

Φp (x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x2 + x + 1

is irreducible over Q for any prime p.

Proof. By Theorem 23.11, it is sufficient to show that Φp(x) is irreducible
over Z. Applying

ϕx+1 (Φp (x)) = Φp (x + 1) =
(x + 1)p − 1

(x + 1)− 1

=
xp +

(p
1

)
+ · · ·+

(p
r

)
xp−r + · · ·+ px

x
≡ g (x) .

The coefficient of xp−v in the numerator
(p
r

)
= p!

r !(p−r)! and is divisible by

p for 0 < r < p since p divides neither r ! nor (p − r)! for 0 < r < p.
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Corollary 23.17

Corollary 23.17 (continued)

Corollary 23.17. The polynomial

Φp (x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x2 + x + 1

is irreducible over Q for any prime p.

Proof (continued). So

g (x) = xp−1 +

(
p

2

)
xp−2 + · · ·+

(
p

r

)
xp−r−1 + · · ·+ p

satisfies the Eisenstein Criterion for prime p. Therefore g (x) is irreducible
over Q. ASSUME Φp (x) = h (x) r (x) is a nontrivial factorization of g (x)
in Z [x ]. Then Φp (x + 1) = g (x) = h (x + 1) r (x + 1) is a nontrivial
factorization of g (x) in Z [x ], a CONTRADICTION. Therefore Φp (x) is
irreducible over Z and also Q.
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Theorem 23.20

Theorem 23.20

Theorem 23.20. If F is a field, then every nonconstant polynomial
f (x) ∈ F [x ] can be factored in F [x ] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F .

Proof. Let f (x) ∈ F [x ] be a nonconstant polynomial. If f (x) is reducible
then f (x) = g (x) h (x) with the degrees of g (x) and h (x) both less than
the degree of f (x) by the definition of irreducible. If f (x) and g (x) are
both irreducible, we are done. Otherwise, we can factor them into
polynomials of lower degree. Continuing the process, we arrive at
factorization f (x) = p1 (x) p2 (x) · · · pr (x) where each pi (x),
i = 1, 2, . . . , r , is irreducible, as claimed.

Now to show uniqueness. Suppose

f (x) = p1 (x) p2 (x) · · · pr (x) = q1 (x) q2 (x) · · · qs (x)

are two factorizations of f (x) into irreducible polynomials.
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Theorem 23.20

Theorem 23.20 (continued)

Theorem 23.20. If F is a field, then every nonconstant polynomial
f (x) ∈ F [x ] can be factored in F [x ] into a product of irreducible
polynomials, the irreducible polynomials being unique except for order and
for unit (that is, nonzero constant) factors in F .

Proof (continued). Then by Corollary 23.19, p1 (x) divides some qj , let
us assume q1 (x). Since q1 (x) is irreducible, then q1 (x) = u1p1 (x) where
u1 6= 0 and so u1 is an unit in field F . So p1 (x) p2 (x) · · · pr (x)
= u1p1 (x) q2 (x) · · · qs . Since F has no zero divisors, then F [x ] has no
zero divisors by Theorem 22.2, so cancellation holds and we have
p2 (x) · · · pr (x) = u1q2 (x) · · · qs (x). Similarly, pi (x) divides qi (x) for
i = 1, 2, . . . , r and so 1 = u1u2 · · · ur ∈ F . So s = r and 1 = u1, u2, . . . , ur .
So the decompositions p1 (x) p2 (x) · · · pr (x) and q1 (x) q2 (x) · · · qs (x)
are the same, except for the order in which polynomials are written and
the possible presence of unit factors, as claimed.
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Theorem 23.20 (continued)
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