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Theorem 26.3 (Analogue of Theorem 13.12)

Theorem 26.3

Theorem 26.3 (Analogue of Theorem 13.12). Let ϕ be a
homomorphism of a ring R into a ring R ′. If 0 is the additive identity in R,
then ϕ (0) = 0′ is the additive identity in R ′, and if a ∈ R, then
ϕ (−a) = −ϕ (a). If S is a subring of R, then ϕ [S ] is a subring of R ′. If
S ′ is a subring of R ′, then ϕ−1 [S ′] is a subring of R. If R has unity 1,
then ϕ (1) is unity for ϕ [R].

Proof. We can consider ϕ as a homomorphism from group 〈R,+〉 to
group 〈R ′,+′〉 and so by Theorem 13.12, ϕ (0) = 0′ and ϕ (−a) = −ϕ (a),
as claimed.

Again, by Theorem 13.12, if S is a subring of R, then 〈ϕ [S ] ,+′〉 is an
abelian subgroup of 〈R ′,+′〉, so we only need check multiplication. If
ϕ (S1) , ϕ (S2) ∈ ϕ [S ], then ϕ (S1) ϕ (S2) = ϕ (S1S2) and
ϕ (S1S2) ∈ ϕ [S ], so ϕ (S1) ϕ (S2) ∈ ϕ [S ] and ϕ [S ] is closed under
multiplication. So ϕ [S ] is a subring of R ′ (associativity of multiplication
and the distribution laws are inherited from R ′), as claimed.

() Introduction to Modern Algebra July 15, 2023 3 / 14



Theorem 26.3 (Analogue of Theorem 13.12)

Theorem 26.3

Theorem 26.3 (Analogue of Theorem 13.12). Let ϕ be a
homomorphism of a ring R into a ring R ′. If 0 is the additive identity in R,
then ϕ (0) = 0′ is the additive identity in R ′, and if a ∈ R, then
ϕ (−a) = −ϕ (a). If S is a subring of R, then ϕ [S ] is a subring of R ′. If
S ′ is a subring of R ′, then ϕ−1 [S ′] is a subring of R. If R has unity 1,
then ϕ (1) is unity for ϕ [R].

Proof. We can consider ϕ as a homomorphism from group 〈R,+〉 to
group 〈R ′,+′〉 and so by Theorem 13.12, ϕ (0) = 0′ and ϕ (−a) = −ϕ (a),
as claimed.

Again, by Theorem 13.12, if S is a subring of R, then 〈ϕ [S ] ,+′〉 is an
abelian subgroup of 〈R ′,+′〉, so we only need check multiplication. If
ϕ (S1) , ϕ (S2) ∈ ϕ [S ], then ϕ (S1) ϕ (S2) = ϕ (S1S2) and
ϕ (S1S2) ∈ ϕ [S ], so ϕ (S1) ϕ (S2) ∈ ϕ [S ] and ϕ [S ] is closed under
multiplication. So ϕ [S ] is a subring of R ′ (associativity of multiplication
and the distribution laws are inherited from R ′), as claimed.

() Introduction to Modern Algebra July 15, 2023 3 / 14



Theorem 26.3 (Analogue of Theorem 13.12)

Theorem 26.3

Theorem 26.3 (Analogue of Theorem 13.12). Let ϕ be a
homomorphism of a ring R into a ring R ′. If 0 is the additive identity in R,
then ϕ (0) = 0′ is the additive identity in R ′, and if a ∈ R, then
ϕ (−a) = −ϕ (a). If S is a subring of R, then ϕ [S ] is a subring of R ′. If
S ′ is a subring of R ′, then ϕ−1 [S ′] is a subring of R. If R has unity 1,
then ϕ (1) is unity for ϕ [R].

Proof. We can consider ϕ as a homomorphism from group 〈R,+〉 to
group 〈R ′,+′〉 and so by Theorem 13.12, ϕ (0) = 0′ and ϕ (−a) = −ϕ (a),
as claimed.

Again, by Theorem 13.12, if S is a subring of R, then 〈ϕ [S ] ,+′〉 is an
abelian subgroup of 〈R ′,+′〉, so we only need check multiplication. If
ϕ (S1) , ϕ (S2) ∈ ϕ [S ], then ϕ (S1) ϕ (S2) = ϕ (S1S2) and
ϕ (S1S2) ∈ ϕ [S ], so ϕ (S1) ϕ (S2) ∈ ϕ [S ] and ϕ [S ] is closed under
multiplication. So ϕ [S ] is a subring of R ′ (associativity of multiplication
and the distribution laws are inherited from R ′), as claimed.

() Introduction to Modern Algebra July 15, 2023 3 / 14



Theorem 26.3 (Analogue of Theorem 13.12)

Theorem 26.3 (continued)

Theorem 26.3 (Analogue of Theorem 13.12). Let ϕ be a
homomorphism of a ring R into a ring R ′. If 0 is the additive identity in R,
then ϕ (0) = 0′ is the additive identity in R ′, and if a ∈ R, then
ϕ (−a) = −ϕ (a). If S is a subring of R, then ϕ [S ] is a subring of R ′. If
S ′ is a subring of R ′, then ϕ−1 [S ′] is a subring of R. If R has unity 1,
then ϕ (1) is unity for ϕ [R].

Proof. Theorem 13.12 also shows that if S ′ is a subring of R ′, then
〈ϕ−1 [S ] ,+〉 is an abelian subgroup of 〈R,+〉. Let a, b ∈ ϕ−1 [S ′] is closed
under multiplication. So ϕ−1 [S ′] is a subring of R (assoicativity of
multiplication and the distribution laws are inherited form R), as claimed.

Finally, if R has unity 1, then for all r ∈ R,
ϕ (r) = ϕ (1r) = ϕ (r1) = ϕ (1)ϕ (r) = ϕ (r) ϕ (1) and so ϕ (1) is unity
for ϕ [R], as claimed.
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Theorem 26.3 (continued)
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Theorem 26.5 (Analogue of Theorem 13.15)

Theorem 26.5

Theorem 26.5 (Analogue of Theorem 13.15). Let ϕ : R → R ′ be a
ring homomorphism and let H = Ker (ϕ). Let a ∈ R. Then
ϕ−1 [ϕ (a)] = a + H = H + a, where a + H = H + a is the coset containing
a of the commutative additive group 〈H,+〉.

Proof. This follows immediately from Theorem 13.15 since 〈R,+〉 is an
abelian group and ϕ restricted to 〈R,+〉 is a group homomorphism.
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Corollary 26.6 (Analogue of Corollary 13.18)

Corollary 26.6

Corollary 26.6 (Analogue of Corollary 13.18). A ring homomorphism
ϕ : R → R ′ is a one-to-one map if and only if Ker (ϕ) = {0}.

Proof. This follows immediately from Corollary 13.18, as in the proof of
Theorem 26.5.
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Theorem 26.7 (Analogue of Theorem 14.1)

Theorem 26.7

Theorem 26.7 (Analogue of Theorem 14.1). Let ϕ : R → R ′ be a ring
homomorphism with kernel H. Then the additive cosets of H form a ring
R/H whose binary operations are defined by choosing representatives.
That is, the sum of two cosets is defined by
(a + H) + (b + H) = (a + b) + H and the product of the cosets is defined
by (a + H)(b + H) = (ab) + H. Also, the map µ : R/H → ϕ [R] defined
by µ (a + H) = ϕ (a) is an isomorphism.

Proof. The additive parts of the theorem follow from Theorem 14.1 (R1)
and we must only check the multiplicative parts.

First to show that multiplication of cosets in terms of representatives is
well defined. Let h1, h2 ∈ H and consider the representatives
a + h1 ∈ a + H and b + h2 ∈ b + H. Let
c = (a + h1) (b + h2) = ab + ah2 + h1b + h1h2. We now show
c ∈ ab + H = ϕ−1 [ϕ (ab)] by showing ϕ (c) = ϕ (ab).
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Theorem 26.7 (Analogue of Theorem 14.1)

Theorem 26.7 (continued 1)

Proof (continued). We have

ϕ (c) = ϕ (ab + ah2 + h1b + h1h2)

= ϕ (ab) + ϕ (ah2) + ϕ (h1b) + ϕ (h1h2)

= ϕ (ab) + ϕ (a) ϕ (h2) + ϕ (h1) ϕ (b) + ϕ (h1) ϕ (h2)

= ϕ (ab) + ϕ (a) 0′ + 0′ϕ (c) + 0′0′ since Ker (ϕ) = H

= ϕ (ab) + 0′ + 0′ + 0′ = ϕ (ab) .

So multiplication is independent of coset representatives and coset
multiplications is well defined.

Let a + H, b + H, c + H ∈ R/H. Then

((a + H) (b + H)) (c + H) = (ab + H) (c + H) = (ab) c + H = a (bc) + H

= (a + H) (bc + H) = (a + H) ((b + H) (c + H))

and so coset multiplication is associative (R2).
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Theorem 26.7 (Analogue of Theorem 14.1)

Theorem 26.7 (continued 2)

Proof (continued). Next,

(a + H) ((b + H) (c + H)) = (a + H) (b + c + H) = a (b + c) + H

= ab+ac+H = (ab + H)+(ac + H) = (a + H) (b + H)+(a + H) (c + H)

and left distribution holds, with right distribution follows similarly (R3).
Hence, R/H is a ring, as claimed.

Theorem 14.1 shows that the map µ defined in the theorem is
well-defined, one-to-one, onto ϕ [R] and satisfies the additive properties for
a homomorphism. For multiplication, µ [(a + H) (b + H)] = µ (ab + H) =
ϕ (ab) = ϕ (a) ϕ (b) = µ (a + H) µ (b + H). Therefore, µ is a one-to-one
and onto homomorphism from R/H to ϕ [R]. That is, µ is an
isomorphism, as claimed.
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Theorem 26.9 (Analogue of Theorem 14.4)

Theorem 26.9

Theorem 26.9 (Analogue of Theorem 14.4). Let H be a subring of the
ring R. Multiplication of additive cosets of H is well defined by the
equation (a + H) (b + H) = ab + H if and only if ah, hb ∈ H for all
a, b ∈ R and h ∈ H.

Proof. First, suppose that ah, hb ∈ H for all a, b ∈ R and all h ∈ H. Let
h1, h2 ∈ H so that a + h1 and b + h2 are also representatives of a + H and
b + H, respectively. Then (a + h1) (b + h2) = ab + ah2 + h1b + h1h2.
Since, by hypothesis, ah2, h1b, h1h2 ∈ H, then (a + h1) (b + h2) ∈ ab + H.
So the product is independent of the representatives and multiplication is
well defined, as claimed.

Conversely, suppose that multiplication of additive cosets by representation
is well defined. Let a ∈ R and consider (a + H) H using the representatives
a ∈ a + H and 0 ∈ H. We have (a + H) H = a0 + H = 0 + H = H.
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Theorem 26.9 (Analogue of Theorem 14.4)

Theorem 26.9 (continued 1)

Theorem 26.9 (Analogue of Theorem 14.4). Let H be a subring of the
ring R. Multiplication of additive cosets of H is well defined by the
equation (a + H) (b + H) = ab + H if and only if ah, hb ∈ H for all
a, b ∈ R and h ∈ H.

Proof (continued). If we choose a ∈ a + H and any h ∈ H as
representatives, we get (a + H) H = a · h + H and so a + h + H = H and
ah ∈ H for any h ∈ H. Similarly, if we consider H (b + H) using
representatives 0 ∈ H, b ∈ b + H we get H (b + H) = H and using
representatives b ∈ b + H and any h ∈ H we get H (b + H) = bh + H.
Hence bh + H = H and bh ∈ H, as claimed.
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Theorem 26.14 (Analogue of Corollary 14.5)

Theorem 26.14

Corollary 26.14. (Analogue of Corollary 14.5.)
Let N be an ideal of a ring R. Then the additive cosets of N form a ring
R/N with the binary operations defined by
(a + N) + (b + N) = (a + b) + N and (a + N)(b + N) = ab + N.

Proof. By Theorem 26.9, addition and multiplication are well-defined. We
know that the additive cosets form an additive group, since ideal N is an
additive subgroup of ring R, and so N is a normal subgroup since 〈R,+〉 is
abelian (by Corollary 14.5).

Associativity and the distribution laws follow from the same properties in R
(see the proof of Theorem 26.7 for R2 and R3). Hence R/N is a ring.
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Theorem 26.16 (Analogue of Theorem 14.9)

Theorem 26.16

Theorem 26.16 (Analogue of Theorem 14.9). Let N be an ideal of a
ring R. Then γ : R → R/N given by γ (x) = x + N is a ring
homomorphism with kernel N.

Proof. The fact that γ (x + y) = γ (x) + γ (y) for all x , y ∈ R follows
from Theorem 14.9. Now
γ (x + y) = (xy) + N = (x + N) (y + N) = γ (x) γ (y) and so γ is a
homomorphism.
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Theorem 26.17. The Fundamental Homomorphism Theorem

Theorem 26.17

Theorem 26.17. Fundamental Homomorphism Theorem (Analogue
of Theorem 14.11)
Let ϕ : R → R ′ be a ring homomorphism with kernel N. Then ϕ[R] is a
ring and the map µ : R/N → ϕ[R] given by µ(x + N) = ϕ(x) is an
isomorphism. If γ : R → R/N is the homomorphism given by
γ(x) = x + N then for each x ∈ R, we have ϕ(x) = (µγ)(x).

Proof. Theorem 26.16 shows that γ is a homomorphism and Theorem
26.7 shows that µ is an isomorphism. The result follows.
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