Introduction to Modern Algebra

Part V. Ideals and Factor Rings V.26 Homomorphisms and Factor Rings

Table of contents

- 1 [Theorem 26.3 \(Analogue of Theorem 13.12\)](#page-2-0)
- [Theorem 26.5 \(Analogue of Theorem 13.15\)](#page-7-0)
- 3 [Corollary 26.6 \(Analogue of Corollary 13.18\)](#page-9-0)
	- [Theorem 26.7 \(Analogue of Theorem 14.1\)](#page-11-0)
	- 5 [Theorem 26.9 \(Analogue of Theorem 14.4\)](#page-18-0)
- 6 [Theorem 26.14 \(Analogue of Corollary 14.5\)](#page-22-0)
- 7 [Theorem 26.16 \(Analogue of Theorem 14.9\)](#page-24-0)
- [Theorem 26.17. The Fundamental Homomorphism Theorem](#page-25-0)

Theorem 26.3 (Analogue of Theorem 13.12). Let φ be a homomorphism of a ring R into a ring R' . If 0 is the additive identity in R , then $\varphi\left(0\right)=0^{\prime}$ is the additive identity in R^{\prime} , and if $a\in R,$ then $\varphi \left({ - a} \right) = - \varphi \left(a \right)$. If S is a subring of R , then $\varphi \left[S \right]$ is a subring of R' . If S' is a subring of R' , then $\varphi^{-1}\left[S'\right]$ is a subring of $R.$ If R has unity 1, then $\varphi(1)$ is unity for $\varphi[R]$.

Proof. We can consider φ as a homomorphism from group $\langle R, + \rangle$ to group $\langle R', +'\rangle$ and so by Theorem 13.12, $\varphi(0)=0'$ and $\varphi(-a)=-\varphi(a),$ as claimed.

Theorem 26.3 (Analogue of Theorem 13.12). Let φ be a homomorphism of a ring R into a ring R' . If 0 is the additive identity in R , then $\varphi\left(0\right)=0^{\prime}$ is the additive identity in R^{\prime} , and if $a\in R,$ then $\varphi \left({ - a} \right) = - \varphi \left(a \right)$. If S is a subring of R , then $\varphi \left[S \right]$ is a subring of R' . If S' is a subring of R' , then $\varphi^{-1}\left[S'\right]$ is a subring of $R.$ If R has unity 1, then $\varphi(1)$ is unity for $\varphi[R]$.

Proof. We can consider φ as a homomorphism from group $\langle R, + \rangle$ to group $\langle R', +'\rangle$ and so by Theorem 13.12, $\varphi\left(0\right)=0'$ and $\varphi\left(-\mathsf{a}\right)=-\varphi\left(\mathsf{a}\right)$, as claimed.

Again, by Theorem 13.12, if S is a subring of R, then $\langle \varphi\,[\mathcal{S}] \, , +'\rangle$ is an abelian subgroup of $\langle R', +'\rangle$, so we only need check multiplication. If $\varphi(S_1), \varphi(S_2) \in \varphi[S],$ then $\varphi(S_1)\varphi(S_2) = \varphi(S_1S_2)$ and $\varphi(S_1S_2) \in \varphi[S]$, so $\varphi(S_1)\varphi(S_2) \in \varphi[S]$ and $\varphi[S]$ is closed under multiplication. So $\varphi[S]$ is a subring of R' (associativity of multiplication and the distribution laws are inherited from R'), as claimed.

Theorem 26.3 (Analogue of Theorem 13.12). Let φ be a homomorphism of a ring R into a ring R' . If 0 is the additive identity in R , then $\varphi\left(0\right)=0^{\prime}$ is the additive identity in R^{\prime} , and if $a\in R,$ then $\varphi \left({ - a} \right) = - \varphi \left(a \right)$. If S is a subring of R , then $\varphi \left[S \right]$ is a subring of R' . If S' is a subring of R' , then $\varphi^{-1}\left[S'\right]$ is a subring of $R.$ If R has unity 1, then $\varphi(1)$ is unity for $\varphi[R]$.

Proof. We can consider φ as a homomorphism from group $\langle R, + \rangle$ to group $\langle R', +'\rangle$ and so by Theorem 13.12, $\varphi\left(0\right)=0'$ and $\varphi\left(-\mathsf{a}\right)=-\varphi\left(\mathsf{a}\right)$, as claimed.

Again, by Theorem 13.12, if S is a subring of R , then $\langle \varphi \left[S \right] , +'\rangle$ is an abelian subgroup of $\langle R', +'\rangle$, so we only need check multiplication. If $\varphi(S_1), \varphi(S_2) \in \varphi[S],$ then $\varphi(S_1)\varphi(S_2) = \varphi(S_1S_2)$ and $\varphi(S_1S_2) \in \varphi[S]$, so $\varphi(S_1)\varphi(S_2) \in \varphi[S]$ and $\varphi[S]$ is closed under multiplication. So $\varphi[S]$ is a subring of R' (associativity of multiplication and the distribution laws are inherited from R'), as claimed.

Theorem 26.3 (continued)

Theorem 26.3 (Analogue of Theorem 13.12). Let φ be a homomorphism of a ring R into a ring R' . If 0 is the additive identity in R , then $\varphi\left(0\right)=0^{\prime}$ is the additive identity in R^{\prime} , and if $a\in R,$ then $\varphi \left({ - a} \right) = - \varphi \left(a \right)$. If S is a subring of R , then $\varphi \left[S \right]$ is a subring of R' . If S' is a subring of R' , then $\varphi^{-1}\left[S'\right]$ is a subring of $R.$ If R has unity 1, then $\varphi(1)$ is unity for $\varphi[R]$.

Proof. Theorem 13.12 also shows that if S' is a subring of R' , then $\braket{\varphi^{-1}\left[S\right], +}$ is an abelian subgroup of $\braket{R, +}$. Let $a, b \in \varphi^{-1}\left[S'\right]$ is closed under multiplication. So $\varphi^{-1}\left[S'\right]$ is a subring of R (assoicativity of multiplication and the distribution laws are inherited form R), as claimed.

Finally, if R has unity 1, then for all $r \in R$, $\varphi(r) = \varphi(1r) = \varphi(r) = \varphi(1) \varphi(r) = \varphi(r) \varphi(1)$ and so $\varphi(1)$ is unity for φ [R], as claimed.

Theorem 26.3 (continued)

Theorem 26.3 (Analogue of Theorem 13.12). Let φ be a homomorphism of a ring R into a ring R' . If 0 is the additive identity in R , then $\varphi\left(0\right)=0^{\prime}$ is the additive identity in R^{\prime} , and if $a\in R,$ then $\varphi \left({ - a} \right) = - \varphi \left(a \right)$. If S is a subring of R , then $\varphi \left[S \right]$ is a subring of R' . If S' is a subring of R' , then $\varphi^{-1}\left[S'\right]$ is a subring of $R.$ If R has unity 1, then $\varphi(1)$ is unity for $\varphi[R]$.

Proof. Theorem 13.12 also shows that if S' is a subring of R' , then $\braket{\varphi^{-1}\left[S\right], +}$ is an abelian subgroup of $\braket{R, +}$. Let $a, b \in \varphi^{-1}\left[S'\right]$ is closed under multiplication. So $\varphi^{-1}\left[S'\right]$ is a subring of R (assoicativity of multiplication and the distribution laws are inherited form R), as claimed.

Finally, if R has unity 1, then for all $r \in R$, $\varphi(r) = \varphi(1) = \varphi(r) = \varphi(1) \varphi(r) = \varphi(r) \varphi(1)$ and so $\varphi(1)$ is unity for φ [R], as claimed.

Theorem 26.5 (Analogue of Theorem 13.15). Let $\varphi: R \to R'$ be a ring homomorphism and let $H = \text{Ker}(\varphi)$. Let $a \in R$. Then $\varphi^{-1}\left[\varphi\left(\emph{a}\right)\right]=\emph{a}+\emph{H}=\emph{H}+\emph{a},$ where $\emph{a}+\emph{H}=\emph{H}+\emph{a}$ is the coset containing a of the commutative additive group $\langle H, + \rangle$.

Proof. This follows immediately from Theorem 13.15 since $\langle R, + \rangle$ is an abelian group and φ restricted to $\langle R, +\rangle$ is a group homomorphism.

Theorem 26.5 (Analogue of Theorem 13.15). Let $\varphi: R \to R'$ be a ring homomorphism and let $H = \text{Ker}(\varphi)$. Let $a \in R$. Then $\varphi^{-1}\left[\varphi\left(\emph{a}\right)\right]=\emph{a}+\emph{H}=\emph{H}+\emph{a},$ where $\emph{a}+\emph{H}=\emph{H}+\emph{a}$ is the coset containing a of the commutative additive group $\langle H, + \rangle$.

Proof. This follows immediately from Theorem 13.15 since $\langle R, + \rangle$ is an abelian group and φ restricted to $\langle R, + \rangle$ is a group homomorphism.

Corollary 26.6

Corollary 26.6 (Analogue of Corollary 13.18). A ring homomorphism $\varphi: \mathsf{R} \to \mathsf{R}'$ is a one-to-one map if and only if $\mathsf{Ker}\,(\varphi) = \{0\}.$

Proof. This follows immediately from Corollary 13.18, as in the proof of Theorem 26.5.

Corollary 26.6

Corollary 26.6 (Analogue of Corollary 13.18). A ring homomorphism $\varphi: \mathsf{R} \to \mathsf{R}'$ is a one-to-one map if and only if $\mathsf{Ker}\,(\varphi) = \{0\}.$

Proof. This follows immediately from Corollary 13.18, as in the proof of Theorem 26.5.

Theorem 26.7 (Analogue of Theorem 14.1). Let $\varphi: R \to R'$ be a ring homomorphism with kernel H. Then the additive cosets of H form a ring R/H whose binary operations are defined by choosing representatives. That is, the sum of two cosets is defined by $(a + H) + (b + H) = (a + b) + H$ and the product of the cosets is defined by $(a + H)(b + H) = (ab) + H$. Also, the map $\mu : R/H \rightarrow \varphi[R]$ defined by $\mu(a+H) = \varphi(a)$ is an isomorphism.

Proof. The additive parts of the theorem follow from Theorem 14.1 (R_1) and we must only check the multiplicative parts.

Theorem 26.7 (Analogue of Theorem 14.1). Let $\varphi: R \to R'$ be a ring homomorphism with kernel H. Then the additive cosets of H form a ring R/H whose binary operations are defined by choosing representatives. That is, the sum of two cosets is defined by $(a + H) + (b + H) = (a + b) + H$ and the product of the cosets is defined by $(a + H)(b + H) = (ab) + H$. Also, the map $\mu : R/H \rightarrow \varphi[R]$ defined by $\mu(a+H) = \varphi(a)$ is an isomorphism.

Proof. The additive parts of the theorem follow from Theorem 14.1 (R_1) and we must only check the multiplicative parts.

First to show that multiplication of cosets in terms of representatives is well defined. Let $h_1, h_2 \in H$ and consider the representatives $a + h_1 \in a + H$ and $b + h_2 \in b + H$. Let $c = (a + h_1)(b + h_2) = ab + ah_2 + h_1b + h_1h_2$. We now show $c \in ab + H = \varphi^{-1} [\varphi(ab)]$ by showing $\varphi(c) = \varphi(ab)$.

Theorem 26.7 (Analogue of Theorem 14.1). Let $\varphi: R \to R'$ be a ring homomorphism with kernel H. Then the additive cosets of H form a ring R/H whose binary operations are defined by choosing representatives. That is, the sum of two cosets is defined by $(a + H) + (b + H) = (a + b) + H$ and the product of the cosets is defined by $(a + H)(b + H) = (ab) + H$. Also, the map $\mu : R/H \rightarrow \varphi[R]$ defined by $\mu(a + H) = \varphi(a)$ is an isomorphism.

Proof. The additive parts of the theorem follow from Theorem 14.1 (R_1) and we must only check the multiplicative parts.

First to show that multiplication of cosets in terms of representatives is well defined. Let $h_1, h_2 \in H$ and consider the representatives $a + h_1 \in a + H$ and $b + h_2 \in b + H$. Let $c = (a + h_1)(b + h_2) = ab + ah_2 + h_1b + h_1h_2$. We now show $c \in ab + H = \varphi^{-1} [\varphi (ab)]$ by showing $\varphi (c) = \varphi (ab)$.

Theorem 26.7 (continued 1)

Proof (continued). We have

$$
\varphi(c) = \varphi(ab + ah_2 + h_1b + h_1h_2)
$$

\n
$$
= \varphi(ab) + \varphi(ah_2) + \varphi(h_1b) + \varphi(h_1h_2)
$$

\n
$$
= \varphi(ab) + \varphi(a)\varphi(h_2) + \varphi(h_1)\varphi(b) + \varphi(h_1)\varphi(h_2)
$$

\n
$$
= \varphi(ab) + \varphi(a)0' + 0'\varphi(c) + 0'0' \text{ since Ker}(\varphi) = H
$$

\n
$$
= \varphi(ab) + 0' + 0' + 0' = \varphi(ab).
$$

So multiplication is independent of coset representatives and coset multiplications is well defined.

Let $a + H$, $b + H$, $c + H \in R/H$. Then $((a + H)(b + H))(c + H) = (ab + H)(c + H) = (ab)c + H = a(bc) + H$ $=(a + H)(bc + H) = (a + H)((b + H)(c + H))$ and so coset multiplication is associative (R_2) .

Theorem 26.7 (continued 1)

Proof (continued). We have

$$
\varphi(c) = \varphi(ab + ah_2 + h_1b + h_1h_2)
$$

\n
$$
= \varphi(ab) + \varphi(ah_2) + \varphi(h_1b) + \varphi(h_1h_2)
$$

\n
$$
= \varphi(ab) + \varphi(a)\varphi(h_2) + \varphi(h_1)\varphi(b) + \varphi(h_1)\varphi(h_2)
$$

\n
$$
= \varphi(ab) + \varphi(a)0' + 0'\varphi(c) + 0'0' \text{ since Ker}(\varphi) = H
$$

\n
$$
= \varphi(ab) + 0' + 0' + 0' = \varphi(ab).
$$

So multiplication is independent of coset representatives and coset multiplications is well defined.

Let
$$
a + H, b + H, c + H \in R/H
$$
. Then
\n
$$
((a + H)(b + H))(c + H) = (ab + H)(c + H) = (ab)c + H = a(bc) + H
$$
\n
$$
= (a + H)(bc + H) = (a + H)((b + H)(c + H))
$$
\nand so coset multiplication is associative (R_2) .

Theorem 26.7 (continued 2)

Proof (continued). Next,

$$
(a+H)((b+H)(c+H)) = (a+H)(b+c+H) = a(b+c)+H
$$

 $= ab + ac + H = (ab + H) + (ac + H) = (a + H)(b + H) + (a + H)(c + H)$

and left distribution holds, with right distribution follows similarly (R_3) . Hence, R/H is a ring, as claimed.

Theorem 14.1 shows that the map μ defined in the theorem is well-defined, one-to-one, onto $\varphi[R]$ and satisfies the additive properties for a homomorphism. For multiplication, μ $[(a + H)(b + H)] = \mu(ab + H)$ $\varphi(ab) = \varphi(a)\varphi(b) = \mu(a+H)\mu(b+H)$. Therefore, μ is a one-to-one and onto homomorphism from R/H to $\varphi[R]$. That is, μ is an isomorphism, as claimed.

Theorem 26.7 (continued 2)

Proof (continued). Next,

$$
(a+H)((b+H)(c+H)) = (a+H)(b+c+H) = a(b+c)+H
$$

 $= ab + ac + H = (ab + H) + (ac + H) = (a + H)(b + H) + (a + H)(c + H)$

and left distribution holds, with right distribution follows similarly (R_3) . Hence, R/H is a ring, as claimed.

Theorem 14.1 shows that the map μ defined in the theorem is well-defined, one-to-one, onto $\varphi[R]$ and satisfies the additive properties for a homomorphism. For multiplication, μ $[(a + H)(b + H)] = \mu(ab + H)$ $\varphi(ab) = \varphi(a)\varphi(b) = \mu(a+H)\mu(b+H)$. Therefore, μ is a one-to-one and onto homomorphism from R/H to $\varphi[R]$. That is, μ is an isomorphism, as claimed.

Theorem 26.9 (Analogue of Theorem 14.4). Let H be a subring of the ring R . Multiplication of additive cosets of H is well defined by the equation $(a + H)(b + H) = ab + H$ if and only if ah, $hb \in H$ for all $a, b \in R$ and $h \in H$.

Proof. First, suppose that ah, $hb \in H$ for all $a, b \in R$ and all $h \in H$. Let $h_1, h_2 \in H$ so that $a + h_1$ and $b + h_2$ are also representatives of $a + H$ and $b + H$, respectively. Then $(a + h_1)(b + h_2) = ab + ah_2 + h_1b + h_1h_2$. Since, by hypothesis, ah_2 , h_1b , $h_1h_2 \in H$, then $(a + h_1)(b + h_2) \in ab + H$. So the product is independent of the representatives and multiplication is well defined, as claimed.

Conversely, suppose that multiplication of additive cosets by representation is well defined. Let $a \in R$ and consider $(a + H)$ H using the representatives $a \in a + H$ and $0 \in H$. We have $(a + H) H = a0 + H = 0 + H = H$.

Theorem 26.9 (Analogue of Theorem 14.4). Let H be a subring of the ring R . Multiplication of additive cosets of H is well defined by the equation $(a + H)(b + H) = ab + H$ if and only if ah, hb $\in H$ for all $a, b \in R$ and $h \in H$.

Proof. First, suppose that ah, $hb \in H$ for all $a, b \in R$ and all $h \in H$. Let $h_1, h_2 \in H$ so that $a + h_1$ and $b + h_2$ are also representatives of $a + H$ and $b + H$, respectively. Then $(a + h_1)(b + h_2) = ab + ah_2 + h_1b + h_1h_2$. Since, by hypothesis, ah_2 , h_1b , $h_1h_2 \in H$, then $(a + h_1)(b + h_2) \in ab + H$. So the product is independent of the representatives and multiplication is well defined, as claimed.

Conversely, suppose that multiplication of additive cosets by representation is well defined. Let $a \in R$ and consider $(a + H)$ H using the representatives $a \in a + H$ and $0 \in H$. We have $(a + H) H = a0 + H = 0 + H = H$.

Theorem 26.9 (continued 1)

Theorem 26.9 (Analogue of Theorem 14.4). Let H be a subring of the ring R . Multiplication of additive cosets of H is well defined by the equation $(a + H)(b + H) = ab + H$ if and only if ah, hb $\in H$ for all $a, b \in R$ and $h \in H$.

Proof (continued). If we choose $a \in a + H$ and any $h \in H$ as representatives, we get $(a + H)$ $H = a \cdot h + H$ and so $a + h + H = H$ and **ah** ∈ **H** for any $h \in H$. Similarly, if we consider $H(b + H)$ using representatives $0 \in H$, $b \in b + H$ we get $H(b + H) = H$ and using representatives $b \in b + H$ and any $h \in H$ we get $H(b + H) = bh + H$. Hence $bh + H = H$ and $bh \in H$, as claimed.

Theorem 26.9 (continued 1)

Theorem 26.9 (Analogue of Theorem 14.4). Let H be a subring of the ring R . Multiplication of additive cosets of H is well defined by the equation $(a + H)(b + H) = ab + H$ if and only if ah, hb $\in H$ for all $a, b \in R$ and $h \in H$.

Proof (continued). If we choose $a \in a + H$ and any $h \in H$ as representatives, we get $(a + H)$ $H = a \cdot h + H$ and so $a + h + H = H$ and ah \in H for any $h \in H$. Similarly, if we consider $H(b+H)$ using representatives $0 \in H$, $b \in b + H$ we get $H(b + H) = H$ and using representatives $b \in b + H$ and any $h \in H$ we get $H(b + H) = bh + H$. Hence $bh + H = H$ and $bh \in H$, as claimed.

Corollary 26.14. (Analogue of Corollary 14.5.)

Let N be an ideal of a ring R. Then the additive cosets of N form a ring R/N with the binary operations defined by $(a + N) + (b + N) = (a + b) + N$ and $(a + N)(b + N) = ab + N$.

Proof. By Theorem 26.9, addition and multiplication are well-defined. We know that the additive cosets form an additive group, since ideal N is an additive subgroup of ring R, and so N is a normal subgroup since $\langle R, +\rangle$ is abelian (by Corollary 14.5).

Associativity and the distribution laws follow from the same properties in R (see the proof of Theorem 26.7 for \mathcal{R}_2 and \mathcal{R}_3). Hence R/N is a ring. \square

Corollary 26.14. (Analogue of Corollary 14.5.)

Let N be an ideal of a ring R. Then the additive cosets of N form a ring R/N with the binary operations defined by $(a + N) + (b + N) = (a + b) + N$ and $(a + N)(b + N) = ab + N$.

Proof. By Theorem 26.9, addition and multiplication are well-defined. We know that the additive cosets form an additive group, since ideal N is an additive subgroup of ring R, and so N is a normal subgroup since $\langle R, +\rangle$ is abelian (by Corollary 14.5).

Associativity and the distribution laws follow from the same properties in R (see the proof of Theorem 26.7 for \mathcal{R}_2 and \mathcal{R}_3). Hence R/N is a ring.

Theorem 26.16 (Analogue of Theorem 14.9). Let N be an ideal of a ring R. Then γ : $R \to R/N$ given by $\gamma(x) = x + N$ is a ring homomorphism with kernel N.

Proof. The fact that $\gamma(x + y) = \gamma(x) + \gamma(y)$ for all $x, y \in R$ follows from Theorem 14.9. Now $\gamma(x + y) = (xy) + N = (x + N)(y + N) = \gamma(x)\gamma(y)$ and so γ is a homomorphism.

Theorem 26.17. Fundamental Homomorphism Theorem (Analogue of Theorem 14.11)

Let $\varphi: R \to R'$ be a ring homomorphism with kernel $N.$ Then $\varphi[R]$ is a ring and the map $\mu : R/N \to \varphi[R]$ given by $\mu(x + N) = \varphi(x)$ is an isomorphism. If γ : $R \rightarrow R/N$ is the homomorphism given by $\gamma(x) = x + N$ then for each $x \in R$, we have $\varphi(x) = (\mu \gamma)(x)$.

Proof. Theorem 26.16 shows that γ is a homomorphism and Theorem 26.7 shows that μ is an isomorphism. The result follows.

Theorem 26.17. Fundamental Homomorphism Theorem (Analogue of Theorem 14.11)

Let $\varphi: R \to R'$ be a ring homomorphism with kernel $N.$ Then $\varphi[R]$ is a ring and the map $\mu : R/N \to \varphi[R]$ given by $\mu(x + N) = \varphi(x)$ is an isomorphism. If γ : $R \rightarrow R/N$ is the homomorphism given by $\gamma(x) = x + N$ then for each $x \in R$, we have $\varphi(x) = (\mu \gamma)(x)$.

Proof. Theorem 26.16 shows that γ is a homomorphism and Theorem 26.7 shows that μ is an isomorphism. The result follows.