Introduction to Modern Algebra

Part VII. Advanced Group Theory VII.36. Sylow Theorems

Table of contents

- Theorem 36.1.
- 2 Theorem 36.3. Cauchy's Theorem
- 3 Lemma 36.6.
- 4 Corollary 36.7.
- 5 Theorem 36.8. First Sylow Theorem.
- 6 Theorem 36.10. Second Sylow Theorem.

Theorem. 36.1. Let G be a group of order p^n and let X be a finite G set. Then $|X| \equiv |X_G| \pmod{p}$.

Proof. With the notation above, Theorem 16.16 implies that $|Gx_i|$ divides |G| for i = 1, 2, ..., r. In particular, for i = s + 1, s + 2, ..., r we have that $|Gx_i|$ divides $|G| = p^n$, and so p must divide $|Gx_i|$ for i = s + 1, s + 2, ..., r. Hence P divides $\sum_{i=s+1}^{r} |Gx_i| = |X| - |X_G|$ (by equation (2)) and so $|X| - |X_G| \equiv 0 \pmod{p}$ and the result follows. \Box

Theorem. 36.1. Let G be a group of order p^n and let X be a finite G set. Then $|X| \equiv |X_G| \pmod{p}$.

Proof. With the notation above, Theorem 16.16 implies that $|Gx_i|$ divides |G| for i = 1, 2, ..., r. In particular, for i = s + 1, s + 2, ..., r we have that $|Gx_i|$ divides $|G| = p^n$, and so p must divide $|Gx_i|$ for i = s + 1, s + 2, ..., r. Hence P divides $\sum_{i=s+1}^{r} |Gx_i| = |X| - |X_G|$ (by equation (2)) and so $|X| - |X_G| \equiv 0 \pmod{p}$ and the result follows. \Box

Theorem 36.3. Cauchy's Theorem

Theorem 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof. With *p* given, we form the set *X* of all *p*-tuples (g_1, g_2, \ldots, g_p) of elements of *G* having the property that the product of these elements is *e*: $X = \{(g_1, g_2, \ldots, g_p) \mid g_i \in G \text{ and } g_1g_2 \cdots g_n = e\}.$

Theorem 36.3. Cauchy's Theorem

Theorem 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof. With *p* given, we form the set *X* of all *p*-tuples (g_1, g_2, \ldots, g_p) of elements of *G* having the property that the product of these elements is *e*: $X = \{(g_1, g_2, \ldots, g_p) \mid g_i \in G \text{ and } g_1g_2 \cdots g_n = e\}$. Notice that in forming a *p*-tuple the first p-1 elements can be ANY elements of *G*, as long as the *p*th element is the inverse of the product of these p-1 elements: $g_p = (g_1g_2 \cdots g_{p-1})^{-1}$ (and conversely, if we have a *p*-tuple in *X* then g_p must have this property). Now there are $|G|^{p-1}$ ways to choose the first p-1 elements and only 1 way to choose the *p*th element, hence there are $|G|^{p-1}$ such *p*-tuples and $|X| = |G|^{p-1}$. Since *p* divides |G|, then *p* divides |X|.

Theorem 36.3. Cauchy's Theorem

Theorem 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof. With *p* given, we form the set *X* of all *p*-tuples (g_1, g_2, \ldots, g_p) of elements of *G* having the property that the product of these elements is *e*: $X = \{(g_1, g_2, \ldots, g_p) \mid g_i \in G \text{ and } g_1g_2 \cdots g_n = e\}$. Notice that in forming a *p*-tuple the first p-1 elements can be ANY elements of *G*, as long as the *p*th element is the inverse of the product of these p-1 elements: $g_p = (g_1g_2 \cdots g_{p-1})^{-1}$ (and conversely, if we have a *p*-tuple in *X* then g_p must have this property). Now there are $|G|^{p-1}$ ways to choose the first p-1 elements and only 1 way to choose the *p*th element, hence there are $|G|^{p-1}$ such *p*-tuples and $|X| = |G|^{p-1}$. Since *p* divides |G|, then *p* divides |X|.

Theorem 36.3. Cauchy's Theorem (Continued 1)

Theorem. 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof (Continued). Let $\sigma = (1, 2, 3, ..., p) \in S_p$ and let σ act on X as $\sigma(g_1, g_2, ..., g_p) = (g_{\sigma(1)}, g_{\sigma(2)}, ..., g_{\sigma(p)}) = (g_2, g_3, ..., g_p, g_1)$. Notice that $(g_2, g_3, ..., g_p, g_1) \in X$ since $(g_1, g_2, ..., g_p) \in X$ implies $g_1g_2g_3 \cdots g_p = e$, which in turn implies $g_1 = (g_2g_3 \cdots g_p)^{-1}$ and that $(g_2g_3 \cdots g_p)g_1 = e$. So σ acts on X and we consider the subgroup $\langle \sigma \rangle$ of S_p which acts on X.

Theorem 36.3. Cauchy's Theorem (Continued 2).

Theorem 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof (Continued). Now $|\langle \sigma \rangle| = p$ and so by Theorem 36.1 we know that $|X| \equiv |X_{\langle \sigma \rangle}| \pmod{p}$ (*). Since *p* divides |X| then *p* must divide $|X_{\langle \sigma \rangle}|$ also. The only *p*-tuple in *X* left fixed by σ (and hence left fixed by $\langle \sigma \rangle$) is (g_1, g_2, \ldots, g_p) where $g_1 = g_2 = \cdots = g_p$.

Theorem 36.3. Cauchy's Theorem (Continued 2).

Theorem 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof (Continued). Now $|\langle \sigma \rangle| = p$ and so by Theorem 36.1 we know that $|X| \equiv |X_{\langle \sigma \rangle}| \pmod{p}$ (*). Since *p* divides |X| then *p* must divide $|X_{\langle \sigma \rangle}|$ also. The only *p*-tuple in *X* left fixed by σ (and hence left fixed by $\langle \sigma \rangle$) is (g_1, g_2, \ldots, g_p) where $g_1 = g_2 = \cdots = g_p$. One such *p*-tuple is (e, e, \ldots, e) . But since $|X_{\langle \sigma \rangle}|$ is a multiple of prime $p \ge 2$, there is some other $(a, a, \ldots, a) \in X_{\langle \sigma \rangle}$ where $a \ne e$. Hence $a^p = e$ and so *a* has order *p* (no smaller positive power of *a* could be *e* since *p* is prime [consider Lagrange's Theorem]). Then $\langle a \rangle$ is a subgroup of *G* of order *p*.

Theorem 36.3. Cauchy's Theorem (Continued 2).

Theorem 36.3. Cauchy's Theorem.

Let p be a prime. Let G be a finite group and let p divide |G|. Then G has an element of order p and (consequently) a subgroups of order p.

Proof (Continued). Now $|\langle \sigma \rangle| = p$ and so by Theorem 36.1 we know that $|X| \equiv |X_{\langle \sigma \rangle}| \pmod{p}$ (*). Since *p* divides |X| then *p* must divide $|X_{\langle \sigma \rangle}|$ also. The only *p*-tuple in *X* left fixed by σ (and hence left fixed by $\langle \sigma \rangle$) is (g_1, g_2, \ldots, g_p) where $g_1 = g_2 = \cdots = g_p$. One such *p*-tuple is (e, e, \ldots, e) . But since $|X_{\langle \sigma \rangle}|$ is a multiple of prime $p \ge 2$, there is some other $(a, a, \ldots, a) \in X_{\langle \sigma \rangle}$ where $a \ne e$. Hence $a^p = e$ and so *a* has order *p* (no smaller positive power of *a* could be *e* since *p* is prime [consider Lagrange's Theorem]). Then $\langle a \rangle$ is a subgroup of *G* of order *p*.

Lemma 36.6.

Lemma 36.6. Let *H* be a *p*-subgroup of a finite group *G*. Then $(N[H]:H) \equiv (G:H) \pmod{p}$.

Proof. First, recall that (G : H) is the number of left cosets of H in G. Let L be the set of left cosets of H in G, and let H act on L by "left translation" so that h(xH) = (hx)H. Then L is an H-set since $(h_1h_2)(xh) = (h_1(h_2x))h$ for all $h_1, h_2, h \in H$ and for all $x \in G$ (by associativity, and so $(h_1h_2)(xH) = h_1(h_2xH)$). Also, by definition, |L| = (G : H).

Now L_H is the set of left cosets that are fixed under action by all elements of H (by definition of the symbols " L_H "). Now xH = h(xH) for all $h \in H^*$ if and only if $xh_1 = h(xh_2)$ for some $h_1, h_2 \in H$; that is $h_1 = (x^{-1}hx)h_2$ or equivalently $H = (x^{-1}hx)H$, which holds if and only if $x^{-1}hx \in H$ for all $h \in H$. Thus xH = h(xH) for all $h \in H$ if and only if $x^{-1}hx = x^{-1}h(x^{-1})^{-1} \in H$ for all $h \in H$, or if and only if $x^{-1} \in N[H]$.

Lemma 36.6.

Lemma 36.6. Let *H* be a *p*-subgroup of a finite group *G*. Then $(N[H]:H) \equiv (G:H) \pmod{p}$.

Proof. First, recall that (G : H) is the number of left cosets of H in G. Let L be the set of left cosets of H in G, and let H act on L by "left translation" so that h(xH) = (hx)H. Then L is an H-set since $(h_1h_2)(xh) = (h_1(h_2x))h$ for all $h_1, h_2, h \in H$ and for all $x \in G$ (by associativity, and so $(h_1h_2)(xH) = h_1(h_2xH)$). Also, by definition, |L| = (G : H).

Now L_H is the set of left cosets that are fixed under action by all elements of H (by definition of the symbols " L_H "). Now xH = h(xH) for all $h \in H^*$ if and only if $xh_1 = h(xh_2)$ for some $h_1, h_2 \in H$; that is $h_1 = (x^{-1}hx)h_2$ or equivalently $H = (x^{-1}hx)H$, which holds if and only if $x^{-1}hx \in H$ for all $h \in H$. Thus xH = h(xH) for all $h \in H$ if and only if $x^{-1}hx = x^{-1}h(x^{-1})^{-1} \in H$ for all $h \in H$, or if and only if $x^{-1} \in N[H]$.

Lemma 36.6 (Continued).

Lemma 36.6. Let *H* be a *p*-subgroup of a finite group *G*. Then $(N[H]:H) \equiv (G:H) \pmod{p}$.

Proof (Continued). Now consider the cosets of H in N[H]; these are of the form xH such that $x \in N[H]$. So the cosets of H in N[H] are exactly the same as the cosets of H in L_H . That is, $(N[H] : H) = |L_H|$.

Since *H* is a *p*-group, it has a power of *p* by Corollary 36.4. By Theorem $36.1 |L| \equiv |L_H| \pmod{p}$, or in the symbols of the index, $(G:H) \equiv (N[H]:H) \pmod{p}$.

Lemma 36.6 (Continued).

Lemma 36.6. Let *H* be a *p*-subgroup of a finite group *G*. Then $(N[H]:H) \equiv (G:H) \pmod{p}$.

Proof (Continued). Now consider the cosets of H in N[H]; these are of the form xH such that $x \in N[H]$. So the cosets of H in N[H] are exactly the same as the cosets of H in L_H . That is, $(N[H] : H) = |L_H|$.

Since *H* is a *p*-group, it has a power of *p* by Corollary 36.4. By Theorem $36.1 |L| \equiv |L_H| \pmod{p}$, or in the symbols of the index, $(G:H) \equiv (N[H]:H) \pmod{p}$.

Corollary 36.7. Let *H* be a *p*-subgroup of a finite group *G*. If *p* divides (G : H) then $N[H] \neq H$.

Proof. Since we hypothesize $(G : H) \equiv 0 \pmod{p}$, then by Lemma 36.6 we have $(N[H] : H) \equiv 0 \pmod{p}$. But since (N[H] : H) is the number of left cosets of H in N[H] then it is at least one (of course H itself is a left coset). But since p divides (N[H] : H), then (N[H] : H) is not 1. So (N[H] : H) = |N[H]|/|H| > 1 and $N[H] \neq H$.

Theorem 36.8. First Sylow Theorem.

Theorem 36.8. First Sylow Theorem. Let G be a finite group and let $|G| = p^m$ where $n \ge 1$ and where p does not divide m. Then

- (1) G contains a subgroup of order p^i for each i where $1 \le i \le n$, and
- (2) every subgroup H of G of order p^i is a normal subgroups of a subgroup of order p^{i+1} for $1 \le i < n$.

Proof. First, by Cauchy's Theorem (Theorem 36.3), *G* has a subgroup of order *p*. We now give an inductive proof of (1). We know *G* has a subgroup of order p^1 . Suppose *G* has a subgroup of order p^i for $1 \le i < n$, say subgroup *H*. Now (G : H) = |G|/|H|, $|G| = p^n m$ and $|H| = p^i$ for i < n. So *p* divides (G : H). By Lemma 36.6, $(N[H] : H) \equiv (G : H) \pmod{p}$ and so *p* divides (N[H] : H).

Theorem 36.8. First Sylow Theorem.

Theorem 36.8. First Sylow Theorem. Let G be a finite group and let $|G| = p^m$ where $n \ge 1$ and where p does not divide m. Then

- (1) G contains a subgroup of order p^i for each i where $1 \le i \le n$, and
- (2) every subgroup H of G of order p^i is a normal subgroups of a subgroup of order p^{i+1} for $1 \le i < n$.

Proof. First, by Cauchy's Theorem (Theorem 36.3), *G* has a subgroup of order *p*. We now give an inductive proof of (1). We know *G* has a subgroup of order p^1 . Suppose *G* has a subgroup of order p^i for $1 \le i < n$, say subgroup *H*. Now (G : H) = |G|/|H|, $|G| = p^n m$ and $|H| = p^i$ for i < n. So *p* divides (G : H). By Lemma 36.6, $(N[H] : H) \equiv (G : H) \pmod{p}$ and so *p* divides (N[H] : H).

Theorem 36.8. First Sylow Theorem (Continued).

Proof (Continued). By definition of N[H], H is a normal subgroup of N[H], so we can form N[H]/H, and we see that p divides (N[H]: H) = |N[H]/H| (since (N[H]: H) is the number of cosets of H in N[H] and N[H]/H is the quotient group of these cosets). So by Cauchy's Theorem (Theorem 36.3), group N[H]/H has a subgroup K of order p. If $\gamma: N[H] \to N[H]/H$ is the canonical homomorphism $(\gamma(x) = x + H)$, then by Theorem 13.12(4) $\gamma^{-1}[K] = \{x \in N[H] \mid \gamma(x) \in K\}$ is a subgroup of N[H] and hence of G. Now the canonical homomorphism $\gamma(x) = x + H$ is "many to one" (for insight, see the diagram in the notes for Section 13; each colored rectangle contains all of the elements ???? to that coset). Now all cosets of H are the same size by Lemma from page 5 of the notes for Section 10 (see also the boxed comment on page 100); this size is $|H| = p^i$.

Theorem 36.8. First Sylow Theorem (Continued).

Proof (Continued). By definition of N[H], H is a normal subgroup of N[H], so we can form N[H]/H, and we see that p divides (N[H]: H) = |N[H]/H| (since (N[H]: H) is the number of cosets of H in N[H] and N[H]/H is the quotient group of these cosets). So by Cauchy's Theorem (Theorem 36.3), group N[H]/H has a subgroup K of order p. If $\gamma: N[H] \to N[H]/H$ is the canonical homomorphism ($\gamma(x) = x + H$), then by Theorem 13.12(4) $\gamma^{-1}[K] = \{x \in N[H] \mid \gamma(x) \in K\}$ is a subgroup of N[H] and hence of G. Now the canonical homomorphism $\gamma(x) = x + H$ is "many to one" (for insight, see the diagram in the notes for Section 13; each colored rectangle contains all of the elements ???? to that coset). Now all cosets of H are the same size by Lemma from page 5 of the notes for Section 10 (see also the boxed comment on page 100); this size is |H| = p'.

Theorem 36.8. First Sylow Theorem (Continued).

Proof (Continued). So the canonical homomorphism is " p^i to one". Since $|\mathcal{K}| = p$ then $\gamma^{-1}[\mathcal{K}] = p^i p = p^{i+1}$. So *G* has a subgroup, namely $\gamma^{-1}[\mathcal{K}]$ of order p^{i+1} and it follows by Mathematical Induction that *G* has a subgroup of order p^i for $1 \le i \le n$.

Second, we have from above that $H < \gamma^{-1}[K] \le N[H]$ where $|\gamma^{-1}[H]| = p^{i+1}$. Since H is normal in N[H] (notice by Definition 36.5 N[H] is the largest subgroup of G having H as a normal subgroups), then trivially H is a normal subgroup of $\gamma^{-1}[K]$ (by Theorem 14.13(2), say). So $\gamma^{-1}[K]$ is the desired group in the claim.

Theorem 36.8. First Sylow Theorem (Continued).

Proof (Continued). So the canonical homomorphism is " p^i to one". Since $|\mathcal{K}| = p$ then $\gamma^{-1}[\mathcal{K}] = p^i p = p^{i+1}$. So *G* has a subgroup, namely $\gamma^{-1}[\mathcal{K}]$ of order p^{i+1} and it follows by Mathematical Induction that *G* has a subgroup of order p^i for $1 \le i \le n$.

Second, we have from above that $H < \gamma^{-1}[K] \le N[H]$ where $|\gamma^{-1}[H]| = p^{i+1}$. Since H is normal in N[H] (notice by Definition 36.5 N[H] is the largest subgroup of G having H as a normal subgroups), then trivially H is a normal subgroup of $\gamma^{-1}[K]$ (by Theorem 14.13(2), say). So $\gamma^{-1}[K]$ is the desired group in the claim.

Theorem 36.10. Second Sylow Theorem.

Theorem 36.10. Second Sylow Theorem. Let P_1 and P_2 be Sylow *p*-subgroups of a finite group *G*. Then P_1 and P_2 are conjugate subgroups of *G*. That is, for some $g \in G$, we have $P_2 = gP_1g^1$.

Proof. We will let one of the subgroups act on left cosets of the other. Let *L* be the set of left cosets of P_1 and let P_2 act on *L* by $y(xP_1) = (yx)P_1$ for $y \in P_2$. Then *L* is a P_2 -set. By Theorem 36.1, the number of cosets fixed by all elements of P_2 satisfies $|L_{P_2}| \equiv |L| \pmod{p}$, and $|L| = (G : P_1)$ (by definition of index). By the First Sylow Theorem and the note above, if $|G| = p^n m$ where $p \nmid m$ then $|P_1| = p^n$, and since all cosets of P_1 are of the same size (see the note on page 5 of the notes for Section 10 or the boxed comment on page 100), then there are *m* left cosets of *P*, and |L| = (G : P) = m.

Theorem 36.10. Second Sylow Theorem.

Theorem 36.10. Second Sylow Theorem. Let P_1 and P_2 be Sylow *p*-subgroups of a finite group *G*. Then P_1 and P_2 are conjugate subgroups of *G*. That is, for some $g \in G$, we have $P_2 = gP_1g^1$.

Proof. We will let one of the subgroups act on left cosets of the other. Let *L* be the set of left cosets of P_1 and let P_2 act on *L* by $y(xP_1) = (yx)P_1$ for $y \in P_2$. Then *L* is a P_2 -set. By Theorem 36.1, the number of cosets fixed by all elements of P_2 satisfies $|L_{P_2}| \equiv |L| \pmod{p}$, and $|L| = (G : P_1)$ (by definition of index). By the First Sylow Theorem and the note above, if $|G| = p^n m$ where $p \nmid m$ then $|P_1| = p^n$, and since all cosets of P_1 are of the same size (see the note on page 5 of the notes for Section 10 or the boxed comment on page 100), then there are *m* left cosets of *P*, and |L| = (G : P) = m.

Theorem 36.10. Second Sylow Theorem (Continued).

Theorem 36.10. Second Sylow Theorem (Continued). Let P_1 and P_2 be Sylow *p*-subgroups of a finite group *G*. Then P_1 and P_2 are conjugate subgroups of *G*. That is, for some $g \in G$, we have $P_2 = gP_1g^1$.

Proof (Continued). So *P* does not divide |L| and hence $|L_{P_2}| \neq 0$. Let $xP_1 \in L_{P_2}$. Then $yxP_1 = xP_1$ for all $y \in P_2$. So $x^{-1}yxP_1 = P_1$ for all $y \in P_2$. That is, $x^{-1}yx \in P_1$ for all $y \in P_2$, or $x^{-1}P_2x \subseteq P_1$ (in fact $x^{-1}P_2x$ is a subgroup of P_1 ; see page 141). Since $|P_1| = |P_2|$, then $x^{-1}P_2x = P_1$, or $P_2 = gP_1g^{-1}$ for $g = x^{-1}$, and P_1 and P_2 are conjugate subgroups of group *G*.

Theorem 36.10. Second Sylow Theorem (Continued).

Theorem 36.10. Second Sylow Theorem (Continued). Let P_1 and P_2 be Sylow *p*-subgroups of a finite group *G*. Then P_1 and P_2 are conjugate subgroups of *G*. That is, for some $g \in G$, we have $P_2 = gP_1g^1$.

Proof (Continued). So *P* does not divide |L| and hence $|L_{P_2}| \neq 0$. Let $xP_1 \in L_{P_2}$. Then $yxP_1 = xP_1$ for all $y \in P_2$. So $x^{-1}yxP_1 = P_1$ for all $y \in P_2$. That is, $x^{-1}yx \in P_1$ for all $y \in P_2$, or $x^{-1}P_2x \subseteq P_1$ (in fact $x^{-1}P_2x$ is a subgroup of P_1 ; see page 141). Since $|P_1| = |P_2|$, then $x^{-1}P_2x = P_1$, or $P_2 = gP_1g^{-1}$ for $g = x^{-1}$, and P_1 and P_2 are conjugate subgroups of group *G*.