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Theorem 36.1.

Theorem 36.1.

Theorem. 36.1. Let G be a group of order pn and let X be a finite G
set. Then |X | ≡ |XG |(mod p).

Proof. With the notation above, Theorem 16.16 implies that |Gxi | divides
|G | for i = 1, 2, . . . , r . In particular, for i = s + 1, s + 2, . . . , r we have
that |Gxi | divides |G | = pn, and so p must divide |Gxi | for

i = s + 1, s + 2, . . . , r . Hence P divides
r∑

i=s+1

|Gxi | = |X | − |XG | (by

equation (2)) and so |X | − |XG | ≡ 0( mod p) and the result follows.
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Theorem 36.3. Cauchy’s Theorem

Theorem 36.3. Cauchy’s Theorem

Theorem 36.3. Cauchy’s Theorem.
Let p be a prime. Let G be a finite group and let p divide |G |. Then G
has an element of order p and (consequently) a subgroups of order p.

Proof. With p given, we form the set X of all p-tuples (g1, g2, . . . , gp) of
elements of G having the property that the product of these elements is e:
X = {(g1, g2, . . . , gp) | gi ∈ G and g1g2 · · · gn = e}.

Notice that in
forming a p-tuple the first p − 1 elements can be ANY elements of G , as
long as the pth element is the inverse of the product of these p − 1
elements: gp = (g1g2 · · · gp−1)

−1 (and conversely, if we have a p-tuple in
X then gp must have this property). Now there are |G |p−1 ways to choose
the first p − 1 elements and only 1 way to choose the pth element, hence
there are |G |p−1 such p-tuples and |X | = |G |p−1. Since p divides |G |, then
p divides |X |.
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Theorem 36.3. Cauchy’s Theorem

Theorem 36.3. Cauchy’s Theorem (Continued 1)

Theorem. 36.3. Cauchy’s Theorem.
Let p be a prime. Let G be a finite group and let p divide |G |. Then G
has an element of order p and (consequently) a subgroups of order p.

Proof (Continued). Let σ = (1, 2, 3, . . . , p) ∈ Sp and let σ act on X as
σ(g1, g2, . . . , gp) = (gσ(1), gσ(2), . . . , gσ(p)) = (g2, g3, . . . , gp, g1). Notice
that (g2, g3, . . . , gp, g1) ∈ X since (g1, g2, . . . , gp) ∈ X implies
g1g2g3 · · · gp = e, which in turn implies g1 = (g2g3 · · · gp)

−1 and that
(g2g3 · · · gp)g1 = e. So σ acts on X and we consider the subgroup 〈σ〉 of
Sp which acts on X .
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Theorem 36.3. Cauchy’s Theorem

Theorem 36.3. Cauchy’s Theorem (Continued 2).

Theorem 36.3. Cauchy’s Theorem.
Let p be a prime. Let G be a finite group and let p divide |G |. Then G
has an element of order p and (consequently) a subgroups of order p.

Proof (Continued). Now |〈σ〉| = p and so by Theorem 36.1 we know
that |X | ≡ |X〈σ〉|(mod p) (∗). Since p divides |X | then p must divide
|X〈σ〉| also. The only p-tuple in X left fixed by σ (and hence left fixed by
〈σ〉) is (g1, g2, . . . , gp) where g1 = g2 = · · · = gp.

One such p-tuple is
(e, e, . . . , e). But since |X〈σ〉| is a multiple of prime p ≥ 2, there is some
other (a, a, . . . , a) ∈ X〈σ〉 where a 6= e. Hence ap = e and so a has order p
(no smaller positive power of a could be e since p is prime [consider
Lagrange’s Theorem]). Then 〈a〉 is a subgroup of G of order p.
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Lemma 36.6.

Lemma 36.6.

Lemma 36.6. Let H be a p-subgroup of a finite group G . Then
(N[H] : H) ≡ (G : H)(mod p).

Proof. First, recall that (G : H) is the number of left cosets of H in G .
Let L be the set of left cosets of H in G , and let H act on L by “left
translation” so that h(xH) = (hx)H. Then L is an H-set since
(h1h2)(xh) = (h1(h2x))h for all h1, h2, h ∈ H and for all x ∈ G (by
associativity, and so (h1h2)(xH) = h1(h2xH)). Also, by definition,
|L| = (G : H).

Now LH is the set of left cosets that are fixed under action by all elements
of H (by definition of the symbols “LH”). Now xH = h(xH) for all h ∈ H∗

if and only if xh1 = h(xh2) for some h1, h2 ∈ H; that is h1 = (x−1hx)h2 or
equivalently H = (x−1hx)H, which holds if and only if x−1hx ∈ H for all
h ∈ H. Thus xH = h(xH) for all h ∈ H if and only if
x−1hx = x−1h(x−1)−1 ∈ H for all h ∈ H, or if and only if x−1 ∈ N[H].
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Lemma 36.6.

Lemma 36.6 (Continued).

Lemma 36.6. Let H be a p-subgroup of a finite group G . Then
(N[H] : H) ≡ (G : H)(mod p).

Proof (Continued). Now consider the cosets of H in N[H]; these are of
the form xH such that x ∈ N[H]. So the cosets of H in N[H] are exactly
the same as the cosets of H in LH . That is, (N[H] : H) = |LH |.

Since H is a p-group, it has a power of p by Corollary 36.4. By Theorem
36.1 |L| ≡ |LH |(mod p), or in the symbols of the index,
(G : H) ≡ (N[H] : H)(mod p).
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Corollary 36.7.

Corollary 36.7.

Corollary 36.7. Let H be a p-subgroup of a finite group G . If p divides
(G : H) then N[H] 6= H.

Proof. Since we hypothesize (G : H) ≡ 0(mod p), then by Lemma 36.6
we have (N[H] : H) ≡ 0(mod p). But since (N[H] : H) is the number of
left cosets of H in N[H] then it is at least one (of course H itself is a left
coset). But since p divides (N[H] : H), then (N[H] : H) is not 1. So
(N[H] : H) = |N[H]|/|H| > 1 and N[H] 6= H.
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Theorem 36.8. First Sylow Theorem.

Theorem 36.8. First Sylow Theorem.

Theorem 36.8. First Sylow Theorem. Let G be a finite group and let
|G | = pm where n ≥ 1 and where p does not divide m. Then

(1) G contains a subgroup of order pi for each i where
1 ≤ i ≤ n, and

(2) every subgroup H of G of order pi is a normal subgroups of
a subgroup of order pi+1 for 1 ≤ i < n.

Proof. First, by Cauchy’s Theorem (Theorem 36.3), G has a subgroup of
order p. We now give an inductive proof of (1). We know G has a
subgroup of order p1. Suppose G has a subgroup of order pi for
1 ≤ i < n, say subgroup H. Now (G : H) = |G |/|H|, |G | = pnm and
|H| = pi for i < n. So p divides (G : H). By Lemma 36.6,
(N[H] : H) ≡ (G : H)(mod p) and so p divides (N[H] : H).
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Theorem 36.8. First Sylow Theorem.

Theorem 36.8. First Sylow Theorem (Continued).

Theorem 36.8. First Sylow Theorem (Continued).
Proof (Continued). By definition of N[H], H is a normal subgroup of
N[H], so we can form N[H]/H, and we see that p divides
(N[H] : H) = |N[H]/H| (since (N[H] : H) is the number of cosets of H in
N[H] and N[H]/H is the quotient group of these cosets). So by Cauchy’s
Theorem (Theorem 36.3), group N[H]/H has a subgroup K of order p. If
γ : N[H] → N[H]/H is the canonical homomorphism (γ(x) = x + H), then
by Theorem 13.12(4) γ−1[K ] = {x ∈ N[H] | γ(x) ∈ K} is a subgroup of
N[H] and hence of G . Now the canonical homomorphism γ(x) = x + H is
“many to one” (for insight, see the diagram in the notes for Section 13;
each colored rectangle contains all of the elements ???? to that coset).
Now all cosets of H are the same size by Lemma from page 5 of the notes
for Section 10 (see also the boxed comment on page 100); this size is
|H| = pi .
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Theorem 36.8. First Sylow Theorem.

Theorem 36.8. First Sylow Theorem (Continued).

Theorem 36.8. First Sylow Theorem (Continued).
Proof (Continued). So the canonical homomorphism is “pi to one”.
Since |K | = p then γ−1[K ] = pip = pi+1. So G has a subgroup, namely
γ−1[K ] of order pi+1 and it follows by Mathematical Induction that G has
a subgroup of order pi for 1 ≤ i ≤ n.

Second, we have from above that H < γ−1[K ] ≤ N[H] where
|γ−1[H]| = pi+1. Since H is normal in N[H] (notice by Definition 36.5
N[H] is the largest subgroup of G having H as a normal subgroups), then
trivially H is a normal subgroup of γ−1[K ] (by Theorem 14.13(2), say ).
So γ−1[K ] is the desired group in the claim.
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Theorem 36.10. Second Sylow Theorem.

Theorem 36.10. Second Sylow Theorem.

Theorem 36.10. Second Sylow Theorem. Let P1 and P2 be Sylow
p-subgroups of a finite group G . Then P1 and P2 are conjugate subgroups
of G . That is, for some g ∈ G , we have P2 = gP1g

1.

Proof. We will let one of the subgroups act on left cosets of the other.
Let L be the set of left cosets of P1 and let P2 act on L by
y(xP1) = (yx)P1 for y ∈ P2. Then L is a P2-set. By Theorem 36.1, the
number of cosets fixed by all elements of P2 satisfies |LP2 | ≡ |L|(mod p),
and |L| = (G : P1) (by definition of index). By the First Sylow Theorem
and the note above, if |G | = pnm where p - m then |P1| = pn, and since
all cosets of P1 are of the same size (see the note on page 5 of the notes
for Section 10 or the boxed comment on page 100), then there are m left
cosets of P, and |L| = (G : P) = m.
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Theorem 36.10. Second Sylow Theorem.

Theorem 36.10. Second Sylow Theorem (Continued).

Theorem 36.10. Second Sylow Theorem (Continued). Let P1 and P2

be Sylow p-subgroups of a finite group G . Then P1 and P2 are conjugate
subgroups of G . That is, for some g ∈ G , we have P2 = gP1g

1.

Proof (Continued). So P does not divide |L| and hence |LP2 | 6= 0. Let
xP1 ∈ LP2 . Then yxP1 = xP1 for all y ∈ P2. So x−1yxP1 = P1 for all
y ∈ P2. That is, x−1yx ∈ P1 for all y ∈ P2, or x−1P2x ⊆ P1 (in fact
x−1P2x is a subgroup of P1; see page 141). Since |P1| = |P2|, then
x−1P2x = P1, or P2 = gP1g

−1 for g = x−1, and P1 and P2 are conjugate
subgroups of group G .
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