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Theorem 37.1.

Theorem 37.1.

Theorem 37.1. Every group of prime - power (that is, every finite
p-group) is solvable.

Proof. If G has order pr , then by the First Sylow Theorem (Theorem
36.8) that G has a subgroup Hi of order pi (part (1)) which is normal in a
subgroup Hi+1 of order pi+1 (by part (2)) for i ≤ i < r . Then
{e} = H0 < H1 < · · · < Hr = G is a composition series, since Hi+1/Hi is
of order p and hence is simple (since it has no proper nontrivial subgroups,
let alone any normal subgroups).

In addition, since Hi+1/Hi is a group o f
order p, then by the Fundamental Theorem of Finitely Generated Abelian
Groups (Theorem 11.12), Hi+1/Hi

∼= Zp and hence is abelian. Therefore,
G is solvable.
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Theorem 37.4.

Theorem 37.4.

Theorem 37.4. The center of a finite nontrivial p-group G is nontrivial.

Proof. In the class equation for G , each ni divides |G | for c + 1 ≤ i ≤ r .
By Corollary 36.4, |G | = pn for some n ∈ N.

So p divides ni (notice that
each ni > 1 since the fixed points are all contained in XG = Z (G )) for
each c + 1 ≤ i ≤ r . So p must also divide c . Since e ∈ Z (G ), then c ≥ 1
and it follows that c ≥ p ≥ 2 and hence Z (G ) is nontrivial.
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Lemma 37.5.

Lemma 37.5.

Lemma 37.5. Let G be a group containing normal subgroups H and K
such that H ∩ K = {e} and H ∨ K = G . Then G is isomorphic to H × K .

Proof. Let h ∈ H and k ∈ K . We have
hkh−1k−1 = (hkh−1)k−1 = h(kh−1k−1) by associativity. Since H is a
normal subgroup, then kh−1k−1 ∈ H (Theorem 14.13(2)) and so
h(kh−1k−1) ∈ H. Since K is a normal subgroup, then hkh−1 ∈ K
(Theorem 14.13(2)) and so (hkh−1) ∈ K So we have
hkh−1k−1 = (hkh−1)k−1 = h(kh−1k−1) ∈ K ∩ H. Since K ∩ H = {e} by
hypothesis, then hkh−1k−1 = e and hk = kh.

Let ϕ : H × K → G be defined as ϕ(hk) = hk. Notice that for
(h, k), (h′, k ′) = (hh′, kk ′).
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Lemma 37.5.

Lemma 37.5 (Continued 1).

Lemma 37.5 (Continued). Let G be a group containing normal
subgroups H and K such that H ∩ K = {e} and H ∨ K = G . Then G is
isomorphic to H × K .

Proof (Continued). Then

ϕ((h, k) · (h′, k ′)) = ϕ(hh′, kk ′)

= hh′kk ′ by the definition of ϕ

= hkh′k ′ by the result of the first paragraph

= ϕ(h, k)ϕ(h′, k ′) by the definition of ϕ.

So ϕ is a homomorphism.
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Lemma 37.5.

Lemma 37.5 (Continued 2).

Lemma 37.5 (Continued). Let G be a group containing normal
subgroups H and K such that H ∩ K = {e} and H ∨ K = G . Then G is
isomorphic to H × K .

Proof (Continued). If ϕ (h, k) = hk = e, then h = k−1 and so, since H
and K are groups, both h and k are in H ∩ K . But then h = k = e and so
Ker(ϕ) = {(e, e)} (the identity in H × K ) and so ϕ is one to one by
Corollary 13.18.

By Lemma 34.4, since K is a normal subgroup of G and H is subgroup of
G , then HK = H ∨ K . Also, H ∨ K = G by hypothesis. By the definition
of ϕ, ϕ is onto HK = H ∨ K = G . So ϕ is a one to one and onto
homomorphism from H × K to G . That is, G ∼= H × K .
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Theorem 37.6.

Theorem 37.6.

Theorem. 37.6. For a prime number p, every group of order p2 is abelian.

Proof. If G is not cyclic (and so no element is of order |G | = p2), then
every element of G except e must be of order p. Let a be such a element.
Then the cyclic subgroup 〈a〉 of order p does not equal G . Also let b ∈ G
with b 6∈ 〈a〉. Then 〈a〉 ∩ 〈b〉 = {e} (otherwise, if e 6= c ∈ 〈a〉 ∩ 〈b〉 then c
generates both the First Sylow Theorem (Theorem 36.8), 〈a〉 is a normal
subgroup of order p1 of group G (of order p2).

Similarly, 〈b〉 is a normal
subgroup of order p of G . Now 〈a〉 ∨ 〈b〉 is a subgroup of G which
properly contains 〈a〉 (since b ∈ 〈a〉 ∨ 〈b〉 but b ∈ 〈a〉). Since |〈a〉| = p,
then |〈a〉 ∨ 〈b〉| must be p2 and hence 〈a〉 ∨ 〈b〉 = G . So the hypothesis of
Lemma 37.5 are satisfied (with H = 〈a〉) and K = 〈b〉), and hence
G ∼= 〈a〉 × 〈b〉. Since 〈a〉 and 〈b〉 are cyclic of order p, we have
G ∼= Zp × Zp by the Fundamental (Theorem 11.12), G is abelian.
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Theorem 37.7.

Theorem 37.7.

Theorem. 37.7. If p and q are prime with p < q, then every group G of
order pq has a single subgroup of order q and this subgroup is normal in
G . Hence G is not simple. If q is not congruent to 1 modulo p, then G is
abelian and cyclic.

Proof. By the First Sylow Theorem (Theorem 16.8), G has a subgroup of
order q. Since |G | = pq, then this subgroup cannot be a subgroup of
another subgroup of G of order a power of a prime (by Lagrange’s
Theorem). So this group of order q is a Sylow q-subgroup. By the Third
Sylow Theorem (Theorem 36.11), the number of such subgroups is
congruent to 1 modulo q and divides pq = |G |; therefore the number of
such subgroups must divide p.

Since p < q and this number is 1(mod q),
then this number must be 1. Hence these is a single subgroup of G of
order q, say Q. Now the mapping ig : G → G defined as ig (x) = gxg−1 is
a homomorphism of G by Exercise 13.29. By Theorem 13.12(3), if Q is a
subgroup of G (since ig is a homomorphism).
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Theorem 37.7.

Theorem 37.7 (Continued 1).

Proof (Continued). Also, ig is one to one (gag−1 = gbg−1 implies
a = b). So ig [Q] is a subgroup of G of order q; that is, ig [Q] = Q for all
g ∈ G . Then, gQg−1 = Q for all g ∈ G and by Theorem 14.13(2), Q is a
normal subgroup of G . Therefore, G is not simple.

Likewise, there is a Sylow p-subgroup P of G , and the number of these, n,
divides pq and is congruent to 1 modulo p. Then n must be either 1 or q.
Now suppose q 6≡ 1(mod p) as hypothesized. Since n is either 1 or q and
n ≡ 1(mod p), then it must be that n = 1. As argued above, it must be
that ig [P] = P for all g ∈ G and P is a normal subgroup of G .
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Theorem 37.7.

Theorem 37.7 (Continued 2).

Proof (Continued). Since every element in Q other than e is of order q
and every element of P other than e is of order p¡ then Q ∩ P = {e}.
Since P and and Q are normal subgroups by Lemma 34.4,
Q ∨ P = QP = PQ. Now Q ∨ P is a subgroup of G which properly
contains Q (and P) and so is of an order dividing |G | = pq. So it must be
that G = Q ∨ P and by Lemma 37.5 G ∼= Q × P. Since Q is cyclic of
order q and P is cyclic of order P, then Q and P are abelian and by the
Fundamental Theorem of Finitely Generated Abelian Groups (Theorem
11.12), Q ∼= Zq and P ∼= Zp. So G ∼= Q × P = Zq × Zp. Since p and q
are relatively prime, G is cyclic and hence abelian (by Theorem 6.1).
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Lemma 37.8.

Lemma 37.8.

Lemma 37.8. If H and K are finite subgroups of a group G , then
|HK | = |H|·|K |

|H∩K | .

Proof. Recall that HK = {hk | h ∈ H, k ∈ K}. Let |H| = r , |K | = s, and
|H ∩ K | = ϕ. We have |HK | ≤ rs. We now count “repetition” in HK . If
h1k1 = h2k2, then let x = h−1

2 h1 = k2k
−1
1 . Since x = h−1

2 h1 then x ∈ H.
Since x = k2k

−1
1 then x ∈ K ; so x ∈ H ∩ K .

So a repetition of a
representation of an element of HK corresponds to an element of H ∩ K .
Conversely, let y ∈ H ∩ K and define h3 = h1y

−1 and k3 = yk1 (where h1,
k1 are as above). Then h3k3 = (h1y

−1)(yk1) = h1k1. So each y ∈ H ∩ K
yields a representation of h1k1 (namely, h3k3). So there is a one-to-one
correspondence between the elements of H ∩ K and the repetitions of
representations of elements of HK . So |HK | = rs

t and the result
follows.
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