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Groups: A Geometric Introduction

A Presentation Given to the ETSU Abstract Algebra Club

SLIDE. Groups: A Geometric Introduction. By Robert “Dr. Bob” Gardner.

SLIDE. A core course in any undergraduate mathematics education is an introduc-

tion to modern algebra. At ETSU, this is the cross listed undergraduate/graduate

class MATH 4127/5127. The book we currently use (currently being the academic

year 2014-2015) is John B. Fraleigh’s A First Course in Abstract Algebra, seventh

edition, published by Addison-Wesley in 2002. In fact, I used the third edition

of this book in my undergraduate algebra classes. In about the third week of a

modern algebra class, you are introduced to the central concept of a “group.”

SLIDE. GROUPS.

SLIDE. Fraleigh defines a group in Section I.4. Formally, a group is a set G of

elements, along with a binary operation which we now denote with a star. A binary

operation is simply a way of taking two elements of G and producing an element

of G associated with the two (ordered) elements. An example is the set of integers

along with the binary operation of addition. The integer 7 is associated with the

two elements 3 and 4 since 3+4 = 7. We require that the group G be closed under

binary operation star—that is, we require that the element produced by the binary

operation is itself in the group. This is why we cannot use the set of integers along

with the binary operation of division as a group since, for example, 3 divided by

4 is not an integer. In addition, we require three properties (or “axioms,” if you
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like). G1: We require the binary operation star to be associative. That is, for all

a, b, c ∈ G we have (a∗b)∗c = a∗ (b∗c). G2: We require the existence of an identity

element of a group—that is, an element e in G such that for all x in G we have

e∗x = x∗e = x. The identity element under addition is 0 and the identity element

under multiplication is 1. G3: We require that each a in G has an inverse in G,

which we denote here as a′—that is, we require a ∗ a′ = a′ ∗ a = e. Under addition,

the inverse of a number is the negative of that number. Under multiplication, the

inverse of a number is the reciprocal of that number.

SLIDE. You are already familiar with several groups. For example, the integers

under addition, the rational numbers under addition, the real numbers under ad-

dition, the complex numbers under addition, and the slightly more exotic example

of the integers modulo n. (Enter) Associativity is clear in each of these examples.

Since the groups are additive, 0 is the identity, and the inverse of any x is −x. Of

course modulo n, the inverse of x is n − x.

SLIDE. Some other familiar groups include the nonzero rational numbers under

multiplication, the nonzero real numbers under multiplication, and the nonzero

complex numbers under multiplication. (Enter) Again, associativity is clear. Since

these are multiplicative groups, 1 is the identity and the inverse of any x is the

reciprocal of x.

SLIDE. In the definition of a group, we did not require commutativity of the binary

operation. However, each of the above examples are based on binary operations

which are commutative. Such groups are called abelian groups. (Enter) In your

sophomore year, you encountered a noncommutative binary operation when you
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dealt with the multiplication of square matrices. So an example of a non-abelian

group is the set of all invertible square matrices under matrix multiplication.

SLIDE. Associativity is “clear” in each of the previous examples. In your under-

graduate career, you are unlikely to encounter many non-associative binary opera-

tions. However, the cross product of vectors in R
3 which you see in Linear Algebra

and Calculus 3 is not associative. (Enter) That is, we do not in general have that

~u × (~v × ~w) = (~u × ~v) × ~w. We can show this by considering a specific example.

We have from the standard unit vectors î and ĵ in R
3 that î × (̂i × ĵ) = −ĵ but

(̂i× î)× ĵ = ~0. (Enter) So we cannot form a group using the cross product as the

binary operation since this operation is not associative!

SLIDE. SYMMETRY GROUPS

SLIDE. Each of the above examples of groups are “algebraic.” We want a more

geometric—a more visual—way to illustrate groups. (Enter) We do so by defining

an isometry. An isometry of n-dimensional space R
n is a function from R

n onto

R
n that preserves distance. (Enter) More precisely, the mapping π is an isometry

from R
n to R

n if for all x, y ∈ R
n we have the distance from x to y is the same as

the distance from π(x) to π(y). We see this expressed here using a metric d on R
n.

SLIDE. Now for the definition of a symmetry group. Let F be a set of points in

R
n. The symmetry group of F in R

n is the set of all isometries of R
n that carry F

onto itself. The group operation is function composition. For our examples, n will

usually be 1, 2, or 3 so that we can visualize the action of the symmetry group on

object F .
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SLIDE. Consider the line segment I in R
1 from a = 0 to b = 1. We’ll see that the

symmetry group of I is affected by the dimension of the space in which we consider

it to be. There are two isometries of R
1 which map I onto itself: f0(x) = x and

f1(x) = 1−x. (Enter) f0 is the identity isometry and f1 “flips” the real line about

the point x = 1/2. Latter, we will call this type of flip a reflection. (Enter) The

“multiplication table” (sometimes called a “Cayley table”) for the symmetry group

of interval I is as given here. Since this group only has two elements, it is said to

be of order 2.

SLIDE. We now consider the same line segment I , but as a subset of R
2 instead of

R
1. This changes the symmetry group of I . It now has four elements. They are the

functions (1) f0(x, y) = (x, y) which is the identity function, (2) f1(x, y) = (1−x, y)

which is reflection about the line x = 1/2, (3) f2(x, y) = (x,−y) which is reflection

about the line y = 0, and (4) f3(x, y) = (1 − x,−y) which is a combination of f1

and f2.

SLIDE. Let’s illustrate each of the isometries. Here we see the x, y-plane with the

quadrants color coded and segment I represented with a red line segment. (Enter)

f0 is the identity and leaves everything unchanged. (Enter) f1 is a reflection about

the line x = 1/2 and so it flips interval I over and swaps its endpoints. This moves

the second quadrant (in orange) and the third quadrant (in green) to the far right,

while moving the first quadrant (in yellow) and the fourth quadrant (in blue) to

the left. (Enter) f2 is a reflection about the x-axis and so simply interchanges

the upper half-plane and the lower half-plane. (Enter) f3 is a combination of two

reflections, one about the line x = 1/2 and the other about the x-axis. This moves
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the first quadrant (in yellow) to the lower left, the second quadrant (in orange) to

the lower right, the third quadrant (in green) to the upper right, and the fourth

quadrant (in blue) to the upper left. (Enter) This symmetry group is denoted D2

and has this multiplication table. Notice that, for example, f2 composed with itself

(that is, f2 ◦ f2) is the identity. This makes geometric sense, since by reflecting the

plane about the x-axis twice puts it back into its original position. In fact, each of

the elements of this group is its own inverse.

SLIDE. Now for something more interesting. We consider the symmetries of an

equilateral triangle. To keep track of the orientation of the triangle, we label the

vertices of the triangle with black numbers 1, 2, and 3. We label the original

location of the vertices with red numbers 1, 2, and 3. (Enter) We introduce a

permutation notation that tells us how the black numbers correspond to the red

numbers. So for the identity permutation, which we denote as ρ0, we have the

black 1 corresponding to the red 1, the black 2 corresponding to the red 2, and

the black 3 corresponding to the red 3. (Enter) Now we rotate the triangle 120◦

clockwise and now we have the black 1 corresponding to the red 2, and so forth as

given here. We denote this correspondence as ρ1. (Enter) If we rotate the triangle

another 120◦ (and so we have rotated it 240◦ from its original orientation) then we

have the correspondence as given here which we denote as ρ2. (Enter) If we rotate

the triangle through 120◦ again, then it returns to its original orientation and we

are back to the identity ρ0.

SLIDE. We can also reflect the triangle about an axis. (Enter) If we reflect it

about a vertical axis then we have the black and red 1’s corresponding as they did
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initially, and the black 2 and black 3 interchanged. We denote this permutation

µ1. We can similarly fix one of the other vertices and interchange the remaining

two. (Enter) We can fix vertex 2 and interchange vertices 1 and 3, denoted µ2.

(Enter) We can fix vertex 3 and interchange vertices 1 and 2, denoted µ3.

SLIDE. Now we compose two of these permutations by performing one and then

the next. (Enter) Suppose we first apply permutation µ1. (Enter) Now we follow

that with permutation ρ1. This produces the product ρ1 ∗ µ1 and we see that it

gives µ3. Here’s how we read the product of two permutations. We read from right

to left. So to find where the black 1 is mapped, notice that it first is mapped to

1 by µ1 and then 1 is mapped to the red 2 by ρ1. So in the product, the black 1

is mapped to the red 2. Similarly, the black 2 is mapped to 3 and then to the red

1; the black 3 is mapped to 2 and then to the red 3. So the product ρ1 ∗ µ1 is the

permutation µ3.

SLIDE. Let’s compute a product again using ρ1 and µ1, but in the opposite order.

(Enter) First apply ρ1. (Enter) Now apply µ1. This gives us that the product

µ1 ∗ ρ1 is µ2. Therefore we see that µ1 ∗ ρ1 6= ρ1 ∗ µ1 and so the symmetry group of

the triangle is not an abelian group; that is, it is not a commutative group.

SLIDE. This group of symmetries is called the dihedral group D3. Here is the

multiplication table for D3. Since the entries in this table are not symmetric with

respect to the main diagonal, we again see that the group is not abelian. (Enter)

Notice that the rotations alone (that is, the ρ’s) form a subgroup of order 3.
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SLIDE. In fact, instead of using an equilateral triangle, we could use any regular

polygon in the discussion of symmetry groups. The symmetry group of the regular

n-gon is the dihedral group Dn which is of order 2n. (Enter) These groups are

generated by two fundamental permutations: rotations and reflections.

SLIDE. If we consider the symmetries of a regular n-gon which only consists of the

rotations (and not the reflections) then we get a subgroup of the dihedral group Dn

which consists of the n rotational permutations. (Enter) This group of n rotational

permutations forms the cyclic group of order n. The cyclic group of order n is the

same (that is, it is “isomorphic to”) the integers modulo n. (Enter) Since, for

each n, the cyclic group of order n is a subgroup of the dihedral group of order 2n,

we often drop the binary operation and write this as Zn < Dn.

SLIDE. As an example, consider a regular hexagon. (Enter) There are six rota-

tional permutations. Notice that these permutations map 1 to: 1, then 2, then 3,

4, 5, 6, and back to 1. So in this cyclic group, 1 cycles around 6 times back to itself

(as do all the other numbers).

SLIDE. In the cyclic group Zn, every element can be “generated” by the first

rotation ρ1. That is, each element of Zn is a power of ρ1: ρ2 = ρ1∗ρ1, ρ3 = ρ1∗ρ1∗ρ1,

and so forth. In fact, the formal definition of a cyclic group is a group which is

generated by a single element. (Enter) The dihedral group Dn can be generated

by two symmetries: a rotation and a reflection. This is the reason these groups

are called dihedral groups. They are generated by two (“di” for two) elementary

permutations.
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SLIDE. It should be no surprise that we want to distinguish between finite and

infinite groups. A group G with binary operation ∗ is finite if the set G has a finite

number of elements. (Enter) We can easily classify the finite symmetry groups

of R
2. By a theorem on page 115 of Fraleigh, we have: The only finite symmetry

groups of a set of points in R
2 (that is, the only “plane symmetry groups” or “groups

of isometries of the plane”) are the groups Zn and Dn for some n. These groups are

sometimes called rosette groups. (Enter) Since we have classified the finite plane

symmetry groups, we now turn our attention to the infinite plane symmetry groups.

This is covered briefly in Fraleigh’s Section II.12, but is covered in some detail in

Chapter 28 of Joseph Gallian’s Contemporary Abstract Algebra, 8th edition.

SLIDE. PLANE ISOMETRIES

SLIDE. To explore the infinite plane symmetry groups, we only need to look

at four types of isometries. Let F be a set of points in R
2. A translation τ of

F is a rigid movement of F in some direction, say the direction given by vector

~v = [v1, v2]. The image of F is then τ(F ), the set of all points (x, y) ∈ F which have

first coordinate x + v1 and second coordinate y + v2. (Enter) We represent set F

as a square. (Enter) Here is vector ~v. (Enter) So τ(F ) is just a rigid translation

of F by vector ~v.

SLIDE. A rotation ρ of F about a point P through an angle θ is simply a rotation

of each point of F through an angle θ about point P . (Enter) Here is angle θ.

(Enter) And here is the rotation ρ(F ).
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SLIDE. A reflection µ of F across a line ` is a mapping of each point of F to its

mirror image with respect to line `. This time we represent set F as a winking

smiley face. We use a winking smiley face instead of a square because the winking

smiley face, unlike the square, has no internal symmetries. (Enter) µ(F ) is then

given as shown here. Notice the mirror image effect. The winking eye was originally

on the right in F , but it is on the left in µ(F ).

SLIDE. A glide reflection γ of F is a combination of a translation and a reflection

across a line `. This produces a translated mirror image. (Enter) So first F is

translated by vector ~v and then reflected about line `. Notice that we could have

done the reflection first and the translation second and we would have ended up

with the same image γ(F ).

SLIDE. Translations and rotations are examples of orientation-preserving isome-

tries (which we illustrated with squares), whereas reflections and glide reflections

are examples of orientation-reversing motions (which we illustrated with winking

smiley faces). (Enter) In fact, the four isometries listed above are the only isome-

tries of the plane. As a theorem, this result is: Any isometry of the plane, R
2, is

either a translation, rotation, reflection, or glide reflection.

SLIDE. Notice that the group Zn consists only of rotations. The group Dn only

consists of rotations and reflections. That is, the finite groups of symmetries of R
2

do not include any translations nor any glide reflections.

SLIDE. THE FRIEZE GROUPS
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SLIDE. We now consider the “discrete frieze groups.” A discrete frieze group

consists of a pattern of finite width and height that is repeated endlessly in both

directions along its baseline to form a strip of infinite length by finite height. (En-

ter) For example, we might have the finite pattern and baseline given here. The

baseline is not actually part of the pattern, but is just used to illustrate how the

finite pattern is repeated. (Enter) This produces the infinite pattern given here.

SLIDE. This pattern of F’s clearly has a symmetry which admits translations only.

(Enter) We can translate to the right one step—we associate this with integer 1.

(Enter) We can translate to the right two steps—we associate this with integer 2.

(Enter) We can translate to the right three steps—we associate this with integer

3. (Enter) We can translate to the right four steps—we associate this with integer

4. (Enter) Starting over, we can translate to the left one step—we associate this

with integer −1. (Enter) We can translate to the left two steps—we associate this

with integer −2. (Enter) So for each integer there is a corresponding translation

(and conversely; the identity translation corresponds to 0). So the frieze group

associated with this pattern is the integers (under addition).

SLIDE. This pattern of D’s has the translational symmetry which the pattern of

F’s had. But it also admits a rotational symmetry about a horizontal line through

the center of the pattern. (Enter) We can translate to the right by 1 with no

rotation—we associate this with the pair (1, 0). (Enter) We can translate to the

left by 1 with no rotation—we associate this with the pair (−1, 0). (Enter) We

can have no translation and a rotation—we associate this with the pair (0, 1).
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SLIDE. We can translate to the right by 1 with 1 rotation—we associate this with

the pair (1, 1). (Enter) We can translate to the left by 1 with 1 rotation—we

associate this with the pair (−1, 1). (Enter) So for each pair (x, y) where x is

an integer and y is either 0 or 1, there is a corresponding translation and rotation

combination which is a symmetry of the pattern. The symmetry group of this

pattern is Z × Z2.

SLIDE. This pattern of T’s has the translational symmetry which the pattern of

F’s had. But it does not admit the rotational symmetry which the pattern of D’s

had. However, it does admit rotational symmetries about a vertical axis. (Enter)

We can translate to the right by 1. (Enter) We can rotate about a vertical axis

half way between two of the T’s. (Enter) We can rotate about a vertical axis

through the middle of one of the T’s. (Enter) The symmetry group consists of

combinations of these symmetries. The symmetry group is denoted D∞.

SLIDE. This pattern of T’s admits all of the symmetries of the previous pattern

of T’s. (Enter) We can translate to the right by 1. (Enter) We can rotate about

a vertical axis half way between two of the T’s. (Enter) We can rotate about a

vertical axis through the middle of one of the T’s. (Enter) So the symmetry group

includes all of the symmetries in D∞.

SLIDE. But this pattern of T’s also admits a rotation about a (Enter) horizontal

axis. The symmetry group is D∞ × Z2.
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SLIDE. We have now seen an example of each of the frieze groups. As a theorem

we have: The collection of discrete frieze groups consist precisely of the following

four groups: (1) the integers, (2) the integers times Z2, (3) the infinite dihedral

group D∞, and (4) the infinite dihedral group times Z2. We observe that since the

integers are a subgroup of D∞, then each frieze group contains the integers as a

subgroup.

SLIDE. Even though there are only four discrete frieze groups, there are seven

types of “frieze patterns.” Gallian describes these seven patterns schematically

as follows. (Enter) Pattern 1. (Enter) The frieze group is the integers and is

generated by a translation.

SLIDE. (Enter) Pattern 2. (Enter) The frieze group is the integers. It is gener-

ated by a glide reflection. (Enter) Pattern 3. (Enter) The frieze group is D∞. It

is generated by a translation and a reflection about a vertical line.

SLIDE. (Enter) Pattern 4. (Enter) The frieze group is D∞. It is generated by a

translation and a rotation about a point. (Enter) Pattern 5. (Enter) The frieze

group is D∞. It is generated by a glide reflection and a reflection about a vertical

line.

SLIDE. (Enter) Pattern 6. (Enter) The frieze group is Z×Z2. It is generated by

a translation and a reflection about a horizontal line. (Enter) Pattern 7. (Enter)

The frieze group is D∞ × Z2. It is generated by a translation, a reflection about a

vertical line, and a reflection about a horizontal line.



13

SLIDE. There are some more interesting or artistic illustrations of the frieze pat-

terns then a pattern of R’s. Here are John Conway’s Frieze Pattern Dance Steps.

SLIDE. There is a flowchart to determine which of the seven frieze patterns applies

based on which symmetries the pattern admits.

SLIDE. Here is the pattern of the trim on my wife’s china cabinet. (Enter) Here

is the idealized version of the pattern. (Enter) It admits a translation. (Enter)

It admits a rotation about a horizontal axis. (Enter) It admits a rotation about

a vertical axis. (Enter) Therefore the frieze group is D∞ × Z2.

SLIDE. THE WALLPAPER GROUPS

SLIDE. The frieze patterns include regular repetitions in one direction (or “di-

mension”) of a fundamental pattern. So the frieze groups include all powers of just

a translation—this is why Z is a subgroup of each frieze group. (Enter) If we

consider regular repetitions in two directions (or “dimensions”) of a fundamental

pattern, then we will get a symmetry group which includes all powers of two (inde-

pendent) translations. The symmetry group will then include Z×Z as a subgroup.

Such a symmetry group is called a crystallographic group or a wallpaper group.

SLIDE. Consider the grid of R’s. We can translate the pattern left/right, up/down,

or a combination of these. (Enter) We can translate to the right by 1—we associate

this with the pair (1, 0). (Enter) We can translate to the left by 1—we associate

this with the pair (−1, 0). (Enter) We can translate up by 1—we associate this

with the pair (0, 1). (Enter) We can translate down by 1—we associate this with

the pair (0,−1).
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SLIDE. (Enter) We can translate to the right by 2 and up by 1—we associate

this with the pair (2, 1).

SLIDE. We can translate to the left by 2 and down by 1—we associate this with

the pair (−2,−1). (Enter) Since this pattern admits no rotations nor reflections,

then the symmetry group is Z × Z (this wallpaper group is denoted p1).

SLIDE. The symmetry group can be Z × Z, yet the grid of images not arranged

in rows and columns at right angles. (Enter) Here in Makato Nakamura’s Fish3

tessellation of the plane, (Enter) the grid of images is generated by translations

in these directions. (Enter) These directions determine a unit or cell. (Enter)

We view the plane as tiled by the unit. The coloration here should be ignored; it

is just for an artistic effect.

SLIDE. If we pick a point in the plane and then follow that point as it is translated

by an integer amount in the two principle directions, (Enter) then we get a lattice

of points.

SLIDE. One can show that there are only five types of lattices that can occur in

a wallpaper group.

SLIDE. Based on these lattices, it can be shown that there are 17 wallpaper

groups. Here are the 17 lattice units with the reflections and rotations represented

symbolically. In the first lattice, there are no rotations or reflections so the associ-

ated wallpaper group, denoted p1, must in fact just be the group of translations.

But the group of translations is isomorphic to Z×Z, so we have that p1 and Z×Z
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are isomorphic. We now discuss one of the examples in more detail and illustrate

how to generate a wallpaper pattern.

SLIDE. The previous two slides contained images from Doris Schattischneider’s

paper “The Plane Symmetry Groups: Their Recognition and Notation” which

appeared in the American Mathematical Monthly in 1978. Much of this presentation

and much of Gallian’s chapter on wallpaper groups is based on this paper. Here

is a part of Chart 5 from Schattischneider’s paper. It gives the lattice unit and

symmetries for the group p31m. The shaded region is the generating region. By

filling it with an image, we will determine the rest of the wallpaper pattern by using

the symmetries. The small equilateral triangle represents an order 3 rotation. That

is, we will rotate the generating region 120◦ about the triangle and 240◦ about the

triangle. The double lines represent an axis of reflection so we will reflect about

this axis. Then we will apply the translations, which are given by the arrows.

SLIDE. We start with the generating region and the symmetries. (Enter) First

we introduce a pattern with no symmetries; we use our old friend the winking

smiley face. (Enter) Rotate the region through 120◦. (Enter) Rotate the region

through another 120◦. (Enter) Rotating through a third 120◦, of course, returns

the winking smiley face to its original position. This is the reason the rotational

symmetry is said to be of order 3. (Enter) Reflect about the axis of reflection.

This completes the lattice unit.

SLIDE. Let’s clean up the lattice unit. Now for the translations. (Enter) We

translate the unit to the right. (Enter) . . . and to the left. (Enter) We translate

the unit negative one times “upward” (as we will call the non-horizontal direction).
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(Enter) . . . negative one time upward and to the left. (Enter) . . . negative one

time upward and to the right. (Enter) Continuing, we tile the plan with the lattice

unit.

SLIDE. We now drop the outline of the lattice units. This gives us our wallpaper

pattern. Can you see the symmetries? (Enter) To see the order 3 rotation, we need

to consider a collection of four of the smiley faces. (Enter) These four smiley faces

can be rotated to reveal the rotational symmetry. (Enter) The axes of reflectional

symmetries are given here. (Enter) These circles of smiley faces are suggestive of

the translational symmetry. (Enter) By introducing a lattice of circles, we can see

how the pattern can be translated left and right and upward and downward.

SLIDE. Now we start with a pattern and try to deduce its symmetry group. Here

is the brick work of my fireplace. (Enter) Here is the pattern idealized.

SLIDE. There is a horizontal axis of reflection. (Enter) There is a vertical axis

of reflection. (Enter) There is a horizontal axis of glide reflection. (Enter) There

is a vertical axis of glide reflection. (Enter) There are several order 2 rotations.

(Enter) Here is a lattice unit. (Enter) This is the same as the lattice unit with

symmetries for group cmm. So the group of symmetries of this brick pattern is

group cmm.

SLIDE. There is also a flowchart for determining a symmetry group for a wallpaper

pattern. Let’s apply this to the brick pattern. (Enter) The largest order of

rotation? (Enter) We know that the brick pattern has only order 2 rotations, which

are indicated by the red diamonds. (Enter) Is there a reflection? (Enter) Yes,
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there is, for example, a horizontal axis of reflection. (Enter) Are there reflections in

2 directions? (Enter) Yes, there are both horizontal and vertical axes of reflection.

(Enter) Are all rotation centers on mirror lines (that is, on axes of reflection)?

(Enter) No, these four centers of rotation are not on axes of reflection. (Enter)

So, again, the symmetry group is cmm.

SLIDE. THE CRYSTALLOGRAPHIC GROUPS IN HIGHER DIMENSIONS

SLIDE. We can consider symmetry groups in higher dimensional spaces as well.

We can classify the symmetry groups in three dimensions as follows. (Enter) The

only finite symmetry groups of a set of points in R
3 (that is, the only “finite groups

of isometries of 3-space”) are the groups Zn (for some n), Dn (for some n), S4,

A4, and A5. You will encounter the symmetry groups Sn and their subgroups, the

alternating groups An, in Introduction to Modern Algebra. (Enter) There are a

total of 230 crystallographic groups in 3-dimensions. In 4-dimensions, there are

4,783 crystallographic groups.

SLIDE. Now we consider the platonic solid with four sides called a tetrahedron. To

do so, we take the perspective of looking straight down on the top vertex. (Enter)

As in two dimensions we label the vertices on the tetrahedron in black and introduce

red numbers outside of the tetrahedron to track the symmetries. First, we start

with the identity permutation iota. (Enter) Now with vertex 1 fixed, we rotate

the tetrahedron 120◦ clockwise thus mapping the black 2 to the red 3, the black 3

to the red 4, and the black 4 to the red 2. We call this permutation τ1. (Enter)

If we rotate through another 120◦ then we get this permutation which we call τ2.

(Enter) Of course another 120◦ takes us back to the identity iota.
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SLIDE. We now take a perspective with vertex 2 at the top. (Enter) We then

get the identity and two new permutations.

SLIDE. Taking the perspective with vertex 3 at the top, (Enter) we get the

identity and two more permutations.

SLIDE. With vertex 4 at the top, (Enter) we again get the identity and two more

permutations.

SLIDE. There is another type of symmetry of the tetrahedron. (Enter) With

the appropriate axis, we can rotate the tetrahedron around in such a way as to

interchange vertices 1 and 2 and interchange vertices 3 and 4.

SLIDE. (Enter) Similarly, we can interchange vertices 1 and 4 and interchange

vertices 2 and 3.

SLIDE. For the final symmetry, we view the tetrahedron from a slightly different

perspective. (Enter) We can interchange vertices 1 and 3 and interchange vertices

2 and 4.

SLIDE. With the notation we have introduced (which comes from the Schaum’s

Outline of Theory and Problems of Group Theory) we have the following multipli-

cation table for the group of symmetries of the tetrahedron. This group is denoted

A4. (Enter) Notice that this group has a subgroup of order 4. It is the subgroup

which consists of the identity and all the sigma permutations (these are the ones

which interchanged pairs of vertices). In fact, there is an interesting behavior to

the distribution of the permutations in this table. (Enter) This array of colors
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has the condition that all of the sigmas are in a yellow square, the elements τ1, τ4,

τ5, and τ8 are in green squares, and τ2, τ3, τ6, and τ7 are in orange squares. These

large 4 by 4 colored squares are cosets of the subgroup of sigmas. In fact, these

cosets themselves form a group of order 3. This group of cosets is isomorphic to

the integers modulo 3, Z3.

SLIDE. The Platonic solids are regular polyhedra with each face a regular poly-

gon. The five Platonic solids are the tetrahedron, cube, octahedron, dodecahedron,

and icosahedron. (Enter) The symmetry groups for the Platonic solids are: the

tetrahedron has symmetry group A4, the cube has symmetry group S5, the octahe-

dron also has symmetry group S5, the dodecahedron has symmetry group A5, and

the icosahedron also has symmetry group A5. (Enter) The cube and octahedron

are duals; the dodecahedron and icosahedron are duals. The tetrahedron is self

dual. This duality relationship is the reason the symmetry groups pair up as they

do.

SLIDE. A topic covered in Introduction to Modern Algebra is the topic of simple

groups. The mathematical community spent over 30 years trying to classify finite

simple groups. In this exploration, several sporadic groups of very large order were

discovered. The largest one is called the monster. It is roughly of order 8.1× 1053.

(Enter) This group was predicted to exist in 1973 by Berndt Fischer and Robert

Griess and constructed by Griess in 1982. (Enter) Wikipedia describes the monster

as the automorphism group of the Griess algebra, which is a 196,884-dimensional

commutative nonassociative algebra. The important thing to take from this is that

the monster is a symmetry group of an object in 196,884-dimensional space. So
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these symmetry groups are prolific!

SLIDE. ALGEBRA?

SLIDE. A very reasonable question is: “What the hell does all this stuff have to

do with the quadratic equation and polynomials? You know, classical algebra!”

(Enter) Groups (and rings and fields) became part of algebra in the 19th century.

While looking for an algebraic formula for the zeros of an nth degree polynomial

(like a quadratic equation for an nth degree polynomial), Abel showed that there is

not (in general) an algebraic solution to a 5th degree polynomial equation. Galois

gave conditions for the existence of an algebraic solution of a general nth degree

polynomial equation. These conditions involved permutations of the zeros of the

polynomial. (Enter) These permutations of the zeros of a polynomial in the study

of algebraic equations led in the 19th century to the more abstract study of groups in

general and permutation groups in particular. By the middle of the 20th century,

group theory and “abstract algebra” had become a major area of mathematics.

That’s why you take modern algebra as an undergraduate!

SLIDE. REFERENCES

SLIDE. WEBSITES


