Introduction to Algebra, MATH 4127 Homework 10, Sections IV.18 and IV.19, Solutions Due Friday April 19, 2013 at 2:30

- 18.20. Consider the ring M₂(Z₂). (a) Find the order of the ring (that is, the number of elements in it). (b) Find all units in M₂(Z₂). Explain your answer by checking each matrix; do not simply list the units.
- **18.37.** Let U be the set of all units in ring $\langle R, +, \cdot \rangle$ with unity. Prove $\langle U, \cdot \rangle$ is a group. HINT: Show closure of U under \cdot , show $\langle U, \cdot \rangle$ satisfies $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3$, and mention when you use $\mathcal{R}_1, \mathcal{R}_2$, or \mathcal{R}_3 .
- **18.A.** Let $\langle R, +, \cdot \rangle$ be a ring. The *center* of R is the set $S = \{a \in R \mid ar = ra$ for all $r \in R\}$. Prove the center of a ring is a subring. HINT: You may use Exercise 18.48 concerning subrings, but justify computations by quoting the use of $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$, or any theorems.
- **19.12** Let $\langle R, +, \cdot \rangle$ be a commutative ring with unity and characteristic 3. Since R is commutative, the Binomial Theorem holds. Use it to compute and simplify $(a + b)^9$ for $a, b \in R$.
- **19.A.** Let $\langle R, +, \cdot \rangle$ be a commutative ring with nonzero $a, b \in R$ and let ab be a zero divisor. Prove that either a or b is a zero divisor.