Introduction to Algebra, MATH 4127 Homework 12, Sections IV.22 and IV.23 Due Friday May 3, 2013 at 2:30

- **22.15.** Find all zeros of f(x)g(x) in \mathbb{Z}_7 where $f(x) = x^3 + 2x^2 + 5$ and $g(x) = 3x^2 + 2x$. Factor polynomial f(x)g(x) as much as possible using the Factor Theorem (Corollary 23.3). Remember that all arithmetic is done in \mathbb{Z}_7 and so all coefficients you compute must be in $\{0, 1, 2, 3, 4, 5, 6\}$.
- **22.27a.** Let F be a field of characteristic zero and let D be the formal polynomial differentiation map

$$D(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_1 + 2a_2 + \dots + na_nx^{n-1}$$

(1) Show that $D: F[x] \to F[x]$ is a group homomorphism of $\langle F[x], + \rangle$ into itself. (2) Is D a group automorphism of $\langle F[x], + \rangle$ with itself? (3) Is D a ring homomorphism of $\langle F[x], +, \cdot \rangle$ with itself?

- **23.2.** For $f(x) = x^6 + 3x^5 + 4x^2 + 4x + 2$ and $g(x) = 3x^2 + 2x + 4$ in $\mathbb{Z}_7[x]$, find q(x) and r(x) guaranteed by the Division Algorithm (Theorem 23.1). HINT: In $\mathbb{Z}_7[x]$, all coefficients are from $\{0, 1, 2, 3, 4, 5, 6\}$.
- **23.9.** The polynomial $f(x) = x^4 + 4$ can be factored into linear factors in $\mathbb{Z}_5[x]$. Find the factorization by finding the zeros of f(x).
- **23.A.** Let $f(x) \in \mathbb{Z}_p[x]$ for prime p. Prove that if f(b) = 0 for $b \in \mathbb{Z}_p$ and $b \neq 0$. Then $f(b^p) = 0$.