Introduction to Algebra, MATH 5127

Homework 3, Sections I.2 and I.3

Due Friday February 8, 2013 at 2:30

- **I.2.11.** Determine whether binary operation * defined on $\mathbb{Z}^+ = \mathbb{N}$ as $a*b = a^b$ is commutative and whether it is associative. If * does satisfy one of these properties, then you need to give a (general) proof. If it fails one of these properties, then a specific example which illustrates this failure is sufficient.
- **I.2.23b.** Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$. Is H closed under matrix multiplication? If so, give a (general) proof. If not, a specific example showing violation of closure is sufficient.
- **I.2.28.** Prove or find a counterexample to the claim that every commutative binary operation on a set having two elements is associative. HINT: Consider all possible tables of such binary structures.
- **I.2.37.** Suppose that * is an associative and commutative binary operation on a set S. Show that $H = \{a \in S \mid a * a = a\}$ is closed under *. (The elements of H are *idempotents* of the binary operation *.)
- **I.3.8.** Determine whether $\phi: M_2(\mathbb{R}) \to \mathbb{R}$ where $\phi(A)$ is the determinant of matrix A, is an isomorphism between $\langle M_2(\mathbb{R}), \cdot \rangle$ and $\langle \mathbb{R}, \cdot \rangle$. If so, then prove ϕ is an isomorphism and if not then explain which part of the definition of isomorphism is violated. Recall that an isomorphism is a one to one and onto mapping with the homomorphism property. HINT: For all $A, B \in M_2(\mathbb{R})$ we have $\det(AB) = \det(A)\det(B)$.
- **I.3.27.** Prove that if $\phi: S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$ and $\psi: S' \to S''$ is an isomorphism of $\langle S', *' \rangle$ with $\langle S'', *'' \rangle$, then the composite function $\psi \circ \phi$ is an isomorphism of $\langle S, * \rangle$ with $\langle S'', *'' \rangle$. You may assume that $\psi \circ \phi$ is one to one and onto, and so you only need to show that the homomorphism property is satisfied.
- **BONUS:** Prove that $\psi \circ \phi$ of Problem I.3.27 is one to one and onto.
- **I.3.29.** Prove that the commutativity of a binary operation is a structural property of a binary algebraic structure. That is, prove that if * is commutative in $\langle S, * \rangle$ and $\phi : \langle S, * \rangle \to \langle S', *' \rangle$ is an isomorphism, then *' is commutative in $\langle S', *' \rangle$.