Introduction to Algebra, MATH 4127

Homework 4, Sections I.4 and I.5

Due Friday February 15, 2013 at 2:30

- **I.4.2.** Determine whether the binary operation on $2\mathbb{Z} = \{2n \mid n \in \mathbb{Z}\}$ defined as a * b = a + b is a group or not. Check each of \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 and verify or find a counterexample to each.
- **I.4.19b.** Let S be the set of all real numbers except -1, $S = \mathbb{R} \setminus \{-1\}$. Define * on S by a*b=a+b+ab. Then * is a binary operation on S. Prove that $\langle S, * \rangle$ is a group.
- **I.4.32.** Show that every group G with identity e and such that x * x = e for all $x \in G$ is abelian. HINT: Consider (a * b) * (a * b).
- **I.4.34.** (BONUS) Let G be a group with a finite number of elements. Show that for any $g \in G$, there exists an $n \in \mathbb{Z}^+ = \mathbb{N}$ such that $a^n = e$. See Exercise 33 for the meaning of a^n . HINT: Consider $e, a, a^2, a^3, \ldots, a^m$, where m is the number of elements in G, and use the cancellation laws.
- **I.5.28.** Find the order of the cyclic subgroup of group V generated by element c where the group table for V is given in Table 5.11 on page 51. Show your work!
- **I.5.52.** Let S be a subset of a group G. Define $H_S = \{x \in G \mid xs = sx \text{ for all } s \in S\}$. Prove that H_S is a subgroup of G. This subgroup is denoted H_G and is called the *center* of group G. Prove that H_G is abelian.