Introduction to Algebra, MATH 5127

Homework 6, Section II.9

Due Friday March 8, 2013 at 2:30

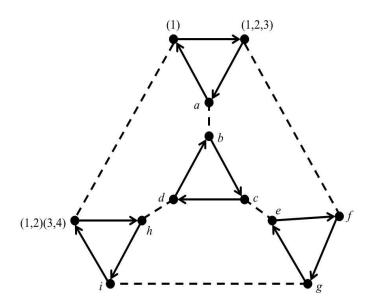
9.3. Find all orbits of the permutation

Show your work.

9.12. Express

as a product of disjoint cycles and then as a product of transpositions.

9.19. The figure below shows a Cayley digraph for the alternating group A_4 using the generating set $S = \{(1, 2, 3), (1, 2)(3, 4)\}$. This particular graph is a "truncated tetrahedron." Label the other nine vertices with the elements of A_4 , expressed as a product of disjoint cycles. Show all work in terms of how the vertex labels are computed and compute them in alphabetic order based on the labels given.



- **9.29.** Prove that for every subgroup H of S_n $(n \ge 2)$, either all the permutations in H are even or exactly half of them are even. HINT: Let σ be an odd permutation in H (if such exists), and define $\phi: H \to H$ as $\phi(h) = \sigma h$ for $h \in H$. Show that ϕ is one to one and onto H. Count the even and odd permutations in $\phi[H]$.
- **9.39.** Prove that S_n is generated by $\{(1,2), (1,2,\ldots,n)\}$. HINT: Show that as r varies, $\sigma = (1,2,\ldots,n)^r(1,2)(1,2,\ldots,n)^{n-r}$ gives all transpositions in S_n of the form $(1,2), (2,3), \ldots, (n-1,n), (n,1)$. Then show that any transposition is a product of transpositions of this special form. NOTE: Since this gives a generating set of S_n of size two, we could use this to produce a Cayley digraph of S_n .
- **9.27(a).** (Bonus) Every permutation in S_n ($n \ge 3$) can be written as a product of at most n-1 transpositions. HINT: On page 90, a cycle is written as a product of transpositions.