Introduction to Algebra, MATH 5127

Homework 9, Sections III.14 and III.15 Due Friday April 5, 2013 at 2:30

- 14.4. Consider the factor group $(\mathbb{Z}_3 \times \mathbb{Z}_5)/(\{0\} \times \mathbb{Z}_5)$. Find the order and elements of this group. List the elements of each coset of $\{0\} \times \mathbb{Z}_5$.
- 14.24. Prove that A_n , $n \ge 2$, is a normal subgroup of S_n (that is, show that the left cosets and right cosets of A_n are the same). Find the index $(S_n : A_n)$. To which familiar group is S_n/A_n isomorphic? HINT: The cosets of A_n consist of the set of all even permutations in S_n and the set of all odd permutations in S_n .
- **14.31.** Suppose H and K are normal subgroups of G. That is, $H \triangleleft G$ and $K \triangleleft G$. Prove that $H \cap K$ is a normal subgroup of G. You may assume that $H \cap K$ is a subgroup of G (which is Exercise 5.54). HINT: Use Theorem 14.13 (twice, maybe three times).
- 14.34. Prove that if finite group G has exactly one subgroup H of a given order, then H is a normal subgroup. HINT: Apply the inner automorphism i_g to H. Use Exercise 5.41.
- **15.3.** Consider the factor group $(\mathbb{Z}_2 \times \mathbb{Z}_4)/\langle (1,2) \rangle$. Find the order and elements of this group. List all elements of each coset of $\langle (1,2) \rangle$. Classify the factor group using the Fundamental Theorem of Finitely Generated Abelian Groups.
- **15.37.** (Test 2, Number 5.) Let Z(G) be the center of group G. Prove that if G/Z(G) is cyclic then G is abelian. HINT: Since G/Z(G) is the group of cosets of Z(G), for G/Z(G) cyclic there is some coset of Z(G) which generates G/Z(G), say aZ(G). Then the cosets of Z(G)(i.e., the elements of G/Z(G)) are $a^n Z(G)$ where $n \in \mathbb{Z}$.