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-
Word of the day

Metagrobology - fancy word for the study of puzzles.

“If you can’t explain it simply, you don’t understand it well enough.”
- Albert Einstein
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Some Definitions From Group Theory

The nth symmetric group is the set of all permutations on [n]. The
binary operation on this group is function composition.

The nth alternating group is the set of all even permutations on [n].
The binary operation on this group is function composition. This
group is denoted A,.

The nth cyclic group is the set of all permutations on [n] that are
generated by a single element a such that a” = e. This group is
denoted Z,,.
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Some Conventions

Any permutation will be written as the product of disjoint cycles with
fixed points omitted.

Note that a cycle of odd length is an even permutation. Likewise, a
cycle of even length is an odd permutation.

We will multiply permutations from left to right. This matches the
literature on the Rubik’s Cube, but differs from Fraleigh.
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Fun Facts About the Rubik's Cube

Ernd Rubik, a Hungarian professor of architecture invented the Biivos
Kocko (literally, Magic Cube) in 1974.

It was marketed as the Hungarian Magic Cube from 1977 to 1980.
From 1980 onwards it was marketed as the Rubik's Cube.
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Fun Facts About the Rubik’s Cube (part 2)

Over 350 million Rubik's Cubes have been sold. It is unknown how
many “knock-offs” have been sold.

Most cubes can be solved in under seventeen moves. Even the most
scrambled cube can be solved in at most twenty moves (God's
Number).

The current world record for solving a Rubik's Cube is 4.90 seconds.
This was set in 2015 by Lucas Etter.
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Fun Facts About the Rubik’s Cube (part 3)

The world’s largest Rubik’'s Cube is located in Knoxville. It was an
exhibit at the Hungarian Pavilion during the 1982 World's Fair.

1982 WORLD'S FAIR
RUBIK'S CUBE

This oversized model of the wildly popular
early 19805 foy was designed by Hungarion
Architecture Professor Ero Rubik and
became one of the 1982 World's Foir's most

well known icons

PLEASE DO NOT TOUCH
OR CLIMB ON THIS
DISPUY

@
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Fun Facts About the Rubik’s Cube (part 4)

The most expensive Rubik's Cube was made in 1995 to commemorate
the fifteenth anniversary. It has 185 carats of precious gems set in
18-karat gold. It is valued between 1.5 and 2.5 million dollars.

_ Group Theory and the Rubik’s Cube October 14, 2016 9 /72



|
The Rubik's Cube Group

The main objective of this talk is to explore the group of
permutations on the Rubik's Cube.

“I've been specializing in groups.”
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The Rubik's Cube Group (Part 2)

This group of permutations is creatively called the Rubik’s Cube
Group. This group will be denoted R.

In doing so, we will use the concrete example of the Rubik's Cube to
illustrate several abstract concepts in group theory.
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Generators of the Rubik's Cube

Like many permutation groups, there are many possible generating
sets for the Rubik's Cube.

One of the most natural sets is {R, L, U, D, F, B}, where R
represents a clockwise rotation of the right face and so on.
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Generators of the Rubik’'s Cube (part 2)

Another natural generating set is:

(i) The vertical rotation of the entire cube, v

(i) The horizontal rotation of the entire cube, p
(iii) The clockwise rotation of a single face, say U.

The advantage of this set of generators is that it generalizes nicely to
the n X n x n cube.
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Generators of the Rubik’'s Cube (part 2)

A more useful set of generators is:

(i) v.p, U

(i) RT*UFTU!

(i) R'D7'RD

(iv) (URUTR™Y)(UTFIUF), (U*FYUF)(URUT*R™)
(v) F(RURT*UHF~

(vi) RURT*URU?R™!

(vii) URUTILTTURTTUTLL
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Abelian?

A natural question is whether R is abelian. That is, do permutations
commute inside of R? As an example, consider the permutations UR
(on the left) and RU (on the right).
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Cubies

To discuss the order of the group, we need to introduce three terms.
A cubie is any piece of the Rubik’'s Cube. These are the pieces that
get moved around as we play with the puzzle. Naturally, they rest in
positions called cubicles. A facelet is one face of a cubie.

There are 6 center cubies, 8 corner cubies, and 12 edge cubies. Note
that cubies can only exchange with other cubies of the same type.
Further, center cubies can only rotate in place.
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A Little Combinatorics

An upper bound on the order can be computed as follows:
(i) There are 8! ways to permute the corners.
(i) There are 32 ways to rotate the corners.
(iii) There are 12! ways to permute the edges.

)

(iv) There are 2!2 ways to flip the edges.

This gives an upper bound of 212 x 3% x 8! x 12!. However, not all of
the above actions are possible...
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Useful Notation

Singmaster introduced a useful notation for describing the cubies
which is independent of the colors used on the cube.

For example, uf is the edge cubie in the up, front position.

Similarly, dbl is the corner cubie in the down, back, left position.
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Useful Notation (part 2)

When writing down permutations of cubies, the order of the letters
DOES matter. This order represents the orientation of the cubies.

Consider the 8-cycle (ur, uf, ul, ub, ru, fu, lu, bu). While this is an
8-cycle, it only involves four cubies. The effect of this cycle is that
after four iterations, each cubie has returned to its original position.
However, each of these cubies has been flipped - A Mobius trip!
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Useful Notation (part 3)

Thus, we could represent (ur, uf, ul, ub, ru, fu, lu, bu) more
compactly as the “flipped 4-cycle” (ur, uf, ul, ub).. Here, the '+’
indicates that flipping has occurred.

We will use a similar notation for the rotation of corner cubies.

Namely, we will use ‘+' to indicate clockwise rotation and ‘-’ to
indicate counter-clockwise rotation.
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Which Permutations are Impossible?

Consider any of the face turns, say U. This can be represented a
product of two disjoint 4-cycles. The first 4-cycle is a permutation on
the edges. The second is a permutation on the corners. Thus,

U = (uf, ul,ub, ur)(ufl, ulb, ubr, urf).

Note that 4-cycles are odd permutations. The product of two odd
permutations is an even permutation.

Ergo, ANY permutation on the cube is an EVEN permutation!
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Which Permutations are Impossible? (part 2)

Note that there are two ways to get an even permutation. An even
permutation is either:

(i) A product of two even permutations.
(i) A product of two odd permutations.

Further, any permutation on the cube is a product of a permutation
on the edges and a permutation on the corners.
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Which Permutations are Impossible? (part 3)

It follows from the above discussion that either:

(i) The permutation on the edges is an even permutation and the
permutation on the corners is an even permutation.

(i) The permutation on the edges is an odd permutation and the
permutation on the corners is an odd permutation.

The upshot of this is that at most half of the potential permutations
are possible!
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Twists and Flips

Before discussing orientation of cubies, we first define the chief facelet
of each edge and corner cubie. If a cubie is in the Up (Down) layer,
then the Up (Down) facelet will be the chief facelet. If a cubie is in
the middle layer, then the Right (Left) facelet will be the chief face.

So, no matter how the cube is scrambled the chief facelet of each
cubie never changes.

When the cube is scrambled, the chief facelet may change orientation
with respect to the chief facelet of the cubicle it occupies.
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Twisted and Flips (part 2)

So if ur — rf, then the edge piece ur has not been flipped. However,
if ur — fr, then the edge piece has been flipped.

A similar convention exists for corner cubies:
(i) If urf — dIb, then the corner is not twisted.
(ii) If urf — rub, then the corner is twisted clockwise.

(iii) If urf — Idf, then the corner is twisted counter-clockwise.
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Flipping Out

Let's examine how a quarter turn of each of the six faces affects the
orientation of the edge cubies:

(i) If the Up (Down) face is turned, then no piece leaves the
respective layer. Thus, no piece changes orientation.

(i) If the Front (Back) face is turned, then the chief face of every
edge cubie is placed in the chief face of an edge cubicle. Thus
no edge piece changes orientation.

(iii) If the Right (Left) face is turned, then all four edge cubies are
flipped.

So, the total number of flips must be an even number!
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Flipping Out (part 2)

The above argument would seem to suggest that the number of flips
must be divisible by four. Consider the move RUR™!. This will affect
the orientation of five edge cubies ur, rf, rb, dr, and ub as follows:

R~ 1
bry w4 ur
fu, —  fuy
rdy 4 rb
fro w—. dr
ur v, fry

ur 4 bry
rf =y ruy
b —,  rdy
dr w—, fry
ub —  ub

USRISRERARAES

So, the number of flips must be an even number, though not
necessarily one that is divisible by four. Hence, half of the potential
orientations are possible.
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A Twisted Sort of Logic

Let's examine how a quarter turn of each of the six faces affects the
orientation of the corner cubies:

(i) If the Up or Down face is turned, no piece leaves the respective
layer. Thus, no piece changes orientation.

(i) If the Front face is turned, then two of the pieces, ufl and frd,
get twisted clockwise. Likewise, urf and fdl get twisted
counter-clockwise. So, a net change in orientation of zero.

(iii) If the Right face is turned, urf and drb are rotated clockwise.
Likewise, drf and urb are rotated counter-clockwise. Again, the
net change in orientation of zero.

So, if we think of a clockwise rotation as a +1/3 “charge” and a

counter-clockwise twist as a -1/3 “charge,” then the “total charge”

of the must be an integer!
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A Twisted Sort of Logic (part 2)

The above argument would suggest that the total charge is zero.
However, consider the move RUR. This affects the charge on the
corner cubies urf, urb, drb, drf, and ulf as follows:

R R
urf  —,  bru, lbu, +—  lbuy
urf —_  brd_ brd_  +—, drf

drb '—>+ frd_;,_
darf —_  fru_
ulf — ulf

frd, —_ urf
rbu_  +—_ rdb,
ufr = bUr_|_

USSR

Notice that the total charge here is +1.
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Quarks, Mesons, and Baryons (oh my)

By the above discussion, the rotation of a single corner is impossible.
Since corners can have a 1/3 rotation (think 1/3 charge), we call
them quarks.

Much like the quarks from particle physics, quarks are never isolated.

A quark may be accompanied by a corner rotated in the opposite
direction (an anti-quark). This quark/anti-quark pair is called a
meson.

Otherwise, there must be three corners all rotated in the same
direction. This set of three quarks is called a baryon.
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Quarks, Mesons, and Baryons (part 2)

Quarks only exist as part of a meson or a baryon.

In either case, the “total charge” of the cube must be an integer.
Hence, only one third of the potential corner rotations are possible.
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Generating the Rubik’'s Cube (again)

We want to show that the remaining permutations are all possible.
To do this, we must show that each of the following is possible:

(i

) an arbitrary double edge-pair swap,
(ii) an arbitrary double corner-pair swap,
)

)

(iii

an arbitrary two-edge flip,

(iv) an arbitrary meson.

Note that any three-element permutation (i.e., a baryon) can be
obtained by overlapping the elements above.
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The Power of Congugacy

Showing that any arbitrary element from each of the above types is
achievable would be a lot of work. Fortunately, we need only show
that a single element of each type is possible. Why?

Recall that if a, g € G, then the conjugation of a by g is the element
-1
8ag .
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The Power of Congugacy (part 2)

Suppose that we can flip an opposite pair of edges on the top face
(say uf and ub) while leaving the other cubies fixed. We denote this
permutation as &.

Further, we want to flip uf and d/ while leaving the other cubies
fixed. We move the down left edge to the top back position with the
moves D1F2. Then apply £&. Now we apply (D71F?)~! = F2?D to
return the (now flipped) down left edge to its original position.

So, we have conjugated & by D=1F2. This is represented by:

(D' F2)(D F?)
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Double Edge-pair Swap

(R*F?B*L*)D(R*F?B*L*)U
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Double Corner-pair Swap

(R*F?B*L?)D(R*F?B*L*)U™}
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Two-edge Flip

(FUT'RFYU)(RL™Y) (B *UR'BUY)(R7L)
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A Meson

((BR'D*RB)U?)?

4, 2016 38 /72



|
The Order of R

We can obtain all of the non-excluded permutations. Thus, the order

of Ris 212, 35 4 8l 4 101
* 3%+ 8l x 121 19
7v933 ~4.3x10
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Commutators and Conjugates

You may notice that we have written many of our elements with
terms such as xyx~ty~1 or xyx1.

Recall that xyx~! is the conjugate of y by x. Think of this as a
“set-up” to do permutation y.

The element xyx~1y~! is the commutator of x and y. Often these
moves do the “heavy lifting” in our solution.

Speed-cubers use a combination of conjugates and commutators to
rapidly progress through the solution.
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The Chinese Remainder Theorem

What is the order of
RU = (ur, br,dr, fr, uf , ul, ub)(urf), (ubr, bdr, dfr, luf, bul)_?

This is the product of a 7-cycle, a 3-cycle, and a 15-cycle. The
Chinese Remainder Theorem states that the order of this element is

least common multiple of the cycle lengths. In this case,
lem(3,7,15) = 105.
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The Chinese Remainder Theorem (part 2)

Incidently, here are the orders of some other elements:

(i) o(F2B2R2L2U2D?) = 2

(i) o(RL 1BF LDU-RL™Y) = 3

(iii) o(FRF-IR71) =6,
) of
) of

O

(iv) o(RU )_105
(v) o(FL2R7*UR™!) = 1260.

It turns out that 1260 is the order of the largest cyclic subgroup of R.
What do other subgroups look like?
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Subgroups

Recall that H is a subgroup of a group G is H forms a group under
the binary operation associated with G.

There are many subgroups associated with R. Cyclic subgroups are
of course all over the place.

One of my favorite subgroups associated with R is the slice group.
This is the subgroup generated by {RL™!, FB~!, UD~!}. Similarly,
the anti-slice group is generated by {RL, FB, UD}. These are both
non-abelian.
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A Non-cyclic Abelian Subgroup

Consider the group generated by {R?L?, F>B? U?D?}. This
subgroup has eight elements:

e, R*L2, F2B?, U2D?, (R?L%)(F2B?),
(RPL)(U°D?), (FB*)(UD%), (RPL*)(F*B*)(U°D?).

Up to isomorphism, there are only five groups of order eight. Hence,
it is easy to see that this subgroup is isomorphic to 7Z3.
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Normal Subgroups

Recall that N is a normal subgroup of G if Vg € G and Vn € N,
gnglelN.

Consider the subgroup of R that leaves all corner cubies fixed. In
other words, this subgroup consists of all permutations and flips of
edge cubies. It is easy to see that this group is normal in R. Call this

subgroup N.
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Cosets

The cosets of N are of the form gN, where g € R.

A permutation that affects only the corners is disjoint from one that
affects only the edges. Hence, these permutations commute. From
this it follows that the cosets of N are of the form gN, where g is a
permutation /rotation on the corners.
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Factor Groups

Recall that if N is a normal subgroup of G, then the factor group
G/N is the group on the cosets of N where multiplication is defined
by (alN)(bN) = (ab)N.

In the case of R/N, we can essentially think of the edge/center
cubies as having no impact on the structure. Hence, we are
“modding out” by the edge permutations. For this reason, only
permutations and rotations of the corner cubies matter.

Hence, R/N is (basically) isomorphic to the group of permutations
on a 2 x 2 x 2 Rubik's Cube.
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Another Normal Subgroup

Consider the group of permutations in R that leaves every cubie in its
original position, but alters their orientation. We call this group the
orientation cube group. We denote it O. Again, O is a normal
subgroup of R.

We'll take a second subgroup of R to be the subgroup of all
permutations that alter the positions of the cubies, but leaves the
orientations alone. This group is the permutation cube group.
Denote this subgroup as P.
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A Funny Thing About Those Last Two Subgroups

Note that O NP = {e}. Further, Vg € R, there is a unique way to
represent g as a product g = ab, where a € O and b € P.

For this reason, we say that R is a semi-direct product of O and P.
This situation is denoted R = O x P.

We are motivated by the above comments to determine the structure
of O and P.
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The Orientation Cube Group

Note that the orientations of the corner cubies is separate from the
orientations of the edge cubies.

Each of the twelve edge cubies has two possible orientations. For the
reasons discussed above, the orientation of eleven edge cubies will
determine the orientation of the twelfth edge cubie. For this reason,
this subgroup of permutations is isomorphic to Z3!.
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The Orientation Cube Group (part 2)

Similarly, each of the eight corner cubies has three possible
orientations. Since isolated quarks are not possible, the orientation of
seven corner cubies will determine the orientation of the last one.
Hence, this subgroup is isomorphic to Z!.

Ergo, O = Z3! x Zi.
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The Permutation Cube Group

Again, we think of P as a product of two subgroups - the group of
permutations on the eight corner cubies and the group of
permutations on the twelve edge cubies. These permutations must
have the same parity. Thus, Ag X Aj, contains exactly half of the
permutations in P. For this reason, Ag X Aj, is a normal subgroup of

P.
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The Permutation Cube Group (part 2)

The permutation on the corners and the permutation on the edges
must have the same parity. Further, Ag x Aj» is normal in P. So, we
write P as a semi-direct product of Ag x A;» and the group

{e, (ur, uf)(urf, urb)}.

If e is chosen from {e, (ur, uf)(urf, urb)}, then both permutations
are even. If (ur, uf)(urf, urb) is chosen, then both permutations are
odd. Note that {e, (ur, uf)(urf, urb)} is isomorphic to Zj.

For this reason,
P= (Ag X A12) X Zz.
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The Rubik's Cube Group

So, we have that

R = (Z3 x 7Z%) x ((Ag x A12) X Zs).

Although, it is usually more convenient (though less precise) to say
that R is a particular subgroup of Ass.
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What About Cubes with Oriented Centers?

You may have seen “souvenir” cubes which have pictures, rather than
colors on each side of the cube. To solve such a cube, the image on
the center must line up with the image on the surrounding pieces. In
such a case, we say that the centers on the cube are oriented.
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Oriented Centers (part 2)

How does this affect the permutation group?

Consider any permutation that restores the position center and edge
cubies while ignoring the centers. As discussed above, this must be
an even permutation. Hence, it must involve an even number of face
turns. Ergo, such a permutation will result in an even number of
center rotations. Since each of the six centers has four possible
rotations, there are 4% possible orientations of the centers. However,
since the total sum of the rotations must be even, we divide by 2.

This gives us 4°/2 possible rotations of the centers.
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Oriented Centers (part 3)

To put this another way, five of the centers can have any rotation.
However, since the total rotation must be even, the final center is
limited to two possible orientations. So if the sum rotation of the first
five centers is even, then the final center must be rotated either 0 or
180 degrees. Likewise, if the sum rotation of the first five centers is
odd, then the final center must be rotated either 90 or 270 degrees.

So the rotational group of the (oriented) centers is isomorphic to
Zi X Zz.
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Oriented Centers (part 4)

Two examples of moves that rotate the centers and restore all other
cubies:

(i) Rotate top center 180 degrees:
(URLUPR™L71)2.
(ii) Rotate top center clockwise, right center counter-clockwise:

RL*FB'UD*R'U'DF'BR'LU.
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Using More Tools...

One way of looking at modern algebra is that it attempts to answer
the question “What can we do with a given set of tools?" In this
case, we know what permutations are possible with the Rubik's Cube.
Note that if we allow additional moves (say flipping one edge), then

we can get all of the “forbidden configurations” in which one edge
has been flipped.
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Nested Subgroups

The process of creating semi-direct product to describe R may
remind you of the process used to find solvable groups in Galois
theory or a composition series for the Jordan-Holder Theorem.

In both cases, the goal is to create a nested series of proper
subgroups of G:

{e} =G <G < <G 1 <G, =G
such that the series {Gg, Gy, ..., G,} satisfies certain properties.

Can we use the notion of nested subgroups to aid in solving the
Rubik's Cube?
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Nested Subgroups (part 2)

In 1981, Morwen Thistlethwaite devised a nested subgroup series for

) G,=R=<L,R,F,BUD>
) Gs=<L,R,F,B, U2 D?>

(i) G, =< L,R,F?, B2 U2, D? >
) Gy =< [2,R? F2 B2 2, D% >
)
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Nested Subgroups (part 3)

Some notes on Thistlethwaite's algorithm:
(i) R can be reduced to Gz in no more than seven moves.

(ii) Gz can be reduced to G, in no more than thirteen moves from
Gs.

(iii) G can be reduced to G; in no more than fifteen moves from G,.

(iv) G can be reduced to the identity in no more than seventeen
moves from Gj.

Using Thistlethwaite's algorithm at most fifty-two moves are needed
to solve the Rubik's Cube. This number has since been reduced down
to 45 moves.
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A Few Words on the Word Problem

Often times elements of a group can be represented in a number of
different ways. For example, in R:

D = (RL'F*B*RL" Y U(RL™*F?B*RL™).
In this case, our “alphabet” is our generating set {R, L, F,B, U, D}

(and their inverses) and our "words” are anything that can be written
as a sequence of those letters.
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A Few Words on the Word Problem (part 2)

The most common description of the word problem is to decide if two
“words"” actually represent the same element in the group.

Another version: Given any element in the group and an alphabet,
find the shortest representation of that element as a word in that
alphabet.
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Other Puzzles - The Platonic Solids

Rubik’s cube type toys also exist for the other Platonic solids. Sadly,
| do not own a Rubik's Icosahedron as it is quite expensive.
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Other Puzzles - Skewbs

In a Skewb puzzle, the corners rotate. This moves the adjacent
centers and the adjacent corners.
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Other Puzzles - About Face?

| have several puzzles that | would classify as “shapeshifters” - the
puzzle changes shape as you play with it. In each of these cases, the
puzzle has the same internal mechanism as the Rubik’'s Cube.
However, how we should think about the faces is significantly
different based on the arrangement.
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Other Puzzle - The Molecube

The Molecube has a Rubik's Cube mechanism. However, the pieces
have no orientation. Further, two of the corners are green, three of
the edges are red, and three of the edges are purple. The goal of this
puzzle is to arrange the balls so that each of the nine colors appears
exactly once on each face of the cube.
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An Open Problem

What are ways to mathematically quantify the difficulty of a puzzle
such as the Rubik's Cube?

(i) Number of states?

(i) Word length?
(iii) Psychological problems?
(iv) Similarity to other puzzles.
(v) The Egg of Columbus.
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Words of Wisdom from the Master

“If you are curious, you'll find the puzzles around you. If you are
determined, you will solve them.”

- Erné Rubik
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Additional Reading

(i) John Ewing and Czes Ko$niowski. Puzzle it Out: Cubes,
Groups, and Puzzles.

(i) John B. Fraleigh. A First Course in Abstract Algebra.

(iii) Alexander H. Frey, Jr. and David Singmaster. Handbook of
Cubik Math.

(iv) Douglas R. Hofstadter. “Magic Cubology” in Metamagical
Themas: Questing for the Essence of Mind and Pattern.

(v) David Joyner. Adventures in Group Theory: Rubik’s Cube,
Merlin’s Machine, and other Mathematical Toys.

(vi) Jerry Slocum, et al. The Cube: The Ultimate Guide to the
World’s Bestselling Puzzle.
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Questions?
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