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Supplement. The Cayley-Dickson Construction and

Nonassociative Algebras

Note. In this supplement, we explore the Cayley-Dickson construction which al-

lows us to create a 2n-dimensional algebra (over R) from an n-dimensional algebra

(over R). We freely use the term “algebra” in discussing the small dimensional

spaces, and formally define it later. By starting with R, we can apply the con-

struction to create C, then apply the construction to C to create the quaternions

H, and apply the construction to H to create the octonions O. The process can

continue, but as we iterate the Cayley-Dickson construction we find that we loose

more and more “structure.” These notes are largely based on John C. Baez’s “The

Octonions,” Bulletin of the American Mathematical Society, 39(2), 145–205 (2002).

A copy of the original paper is online in PDF. You can also view a webpage version

on Baez’s website.

Note. Sir William Rowan Hamilton (August 4, 1805–September 2, 1865) was an

Irish mathematician, astronomer, and physicist. He was a professor of Astronomy

at Trinity College Dublin, and a director at Dunsink Observatory near Dublin.

Hamilton is known in the scientific world for his work in optics and classical me-

chanics; in particular, his reformulation of Newtonian mechanics into what today

is called Hamiltonian mechanics. In mathematics, he is primarily known for his

introduction of the quaternions, denoted H (in commemoration of Hamilton).

https://math.ucr.edu/home/baez/octonions/octonions.pdf
https://math.ucr.edu/home/baez/octonions/
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William Rowan Hamilton (image from the MacTutor History of Mathematics

Archive biography of Hamilton, accessed 10/26/2022.

In 1833 (on November 4), Hamilton presented a paper to Royal Irish Academy

in which he expressed the complex numbers as ordered pairs of real numbers and

defined addition and multiplication of the pairs in such a way that the order pair

(a, b) represents the complex number a + bi. The paper was published as “Theory

of Conjugate Functions, or Algebraic Couples; with a Preliminary and Elementary

Essay on Algebra as the Science of Pure Time,” The Transactions of the Royal Irish

Academy, 17, 293–423 (1831). The paper can be viewed and downloaded from JS-

TOR (accessed 10/26/2022). (The dates of 1831 versus 1833 remain a mystery to

your humble presenter!) On page 403 of the journal in “On the Addition, Sub-

traction, Multiplication, and Division, of Number-Couples, as combined with each

other,” Hamilton defines these arithmetic operations as (though it is unnecessary

to define subtraction and division, since these are not really arithmetic operations

https://mathshistory.st-andrews.ac.uk/Biographies/Hamilton/
https://mathshistory.st-andrews.ac.uk/Biographies/Hamilton/
https://www.jstor.org/stable/30078796
https://www.jstor.org/stable/30078796
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but instead involve additive and multiplicative inverses):

(b1, b2) + (a1, a2) = (b1 + a1, b2 + a2); (52.)

(b1, b2)− (a1, a2) = (b1 − a1, b2 − a2); (53.)

(b1, b2)(a1, a2) = (b1, b2)× (a1, a2) = (b1a1 − b2 + a2, b2a1 + b1a2); (54.)

(b1, b2)

(a1, a2)
=

(
b1a1 + b2a2

a2
1 + a2

2
,
b2a1 − b1a2

a2
1 + a2

2

)
(55.)

After several pages of computations with exponential and trigonometric functions

(Hamilton is working on dealing with complex exponents in this), it is stated on

pages 417 and 418 of the journal:

√
−1 = (0, 1) (157.)

(a1, a2) = a1 + a2
√
−1, (158.)

In this way, Hamilton ties his ordered pairs of real numbers (or “algebraic couples”)

and resulting equations involving two separate real equations to Cauchy’s “(so

called) Imaginary Equation[s],” as he states in a footnote on page 297 of the journal.

Note. In Complex Analysis 1 (MATH 5510), the complex field is defined using

Hamilton’s approach. See my online notes for Complex Analysis 1 on Section I.2.

The Field of Complex Numbers. With C = {(a, b) | a, b ∈ R}, we define addition as

(a, b) + (c, d) = (a + c, b + d) and multiplication as (a, b) · (c, d) = (ac− bd, bc− ad).

It is straightforward to confirm that C so defined is a field. We define the conjugate

of z = (a, b) and z = (a, b)∗ = (a,−b) and the modulus of z = (a, b) as |z| =
√

zz =
√

a2 + b2 (we will use the term “norm” instead of modulus, in general).

The ordered pair (a, b) is denoted a + ib, as expected.

https://faculty.etsu.edu/gardnerr/5510/notes/I-2.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/I-2.pdf
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Note. Sir William Rowan Hamilton introduced the quaternions to the mathemat-

ical world in the work “On Quaternions; or on a new System of Imaginaries in

Algebra.” This work appeared in 18 installments of The London, Edinburgh and

Dublin Philosophical Magazine and Journal of Science between 1844 and 1850. It

appeared in volumes XXV to XXXVI. David R. Wilkins of the School of Mathe-

matics, Trinity College, Dublin has a nice version of the work online (it runs 92

pages).

Note. The octonions were discovered in 1843 by John Graves, a friend of William

R. Hamilton. Arthur Cayley independently discovered the octonions and pub-

lished his result in “On Jacobi’s Elliptic Functions, in reply to the Rev.; and on

Quaternions,” Philosophical Magazine, 26(172), 208–211 (March, 1845); Cayley’s

work on the Quaternions appears as “P.S. On Quaternions on pages 210 and 211.

Graves published his work in “On a Connection between the General Theory of

Normal Couples and the Theory of Complete Quadratic Functions of Two Vari-

ables,” Philosophical Magazine, 26(173), 315-320 (April, 1845). So Graves work

was first, but his publication appears very slightly after Cayley’s.

John Thomas Graves Arthur Cayley

December 4, 1806–March 29, 1870 August 16, 1821–January 26, 1895

https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/OnQuat/
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These images are from the MacTutor History of Mathematics Archive biographies

of Graves and Cayley (accessed 10/26/2022). The Thüringer Universistäts - und

Landesbibliothek Jena website has copies of both Cayley’s paper and Graves’ pa-

per which can be viewed online or downloaded (accessed 10/26/2022). Cayley’s

approach (in which he constructed the octonions by considering ordered pairs of

quaternions) was later generalized by Leonard E. Dickson in “On Quaternions and

Their Generalization and the History of the Eight Square Theorem,” Annals of

Mathematics, Second Series, 20(3), 155-171 (1919). Dickson’s paper is online on

JSTOR (accessed 10/26/2022).

Leonard Dickson (January 22, 1874–January 17, 1954; image from the MacTutor

History of Mathematics Archive biography of Dickson, accessed 10/26/2022.

The technique introduced by Cayley and generalized by Dickson, is now called the

Cayley-Dickson Construction. We now describe the process as described in John

C. Baez’s “The Octonions,” Bulletin of the American Mathematical Society, 39(2),

145–205 (2001). We start with R and generate C as motivation.

https://mathshistory.st-andrews.ac.uk/Biographies/Graves_John/
https://mathshistory.st-andrews.ac.uk/Biographies/Cayley/
https://zs.thulb.uni-jena.de/content/below/index.xml
https://zs.thulb.uni-jena.de/content/below/index.xml
https://zs.thulb.uni-jena.de/rsc/viewer/jportal_derivate_00126095/g/PMS_1845_Bd26_%200213.tif
https://zs.thulb.uni-jena.de/rsc/viewer/jportal_derivate_00126095/g/PMS_1845_Bd26_%200321.tif
https://zs.thulb.uni-jena.de/rsc/viewer/jportal_derivate_00126095/g/PMS_1845_Bd26_%200321.tif
https://www.jstor.org/stable/1967865#metadata_info_tab_contents
https://mathshistory.st-andrews.ac.uk/Biographies/Dickson/
https://mathshistory.st-andrews.ac.uk/Biographies/Dickson/
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Note. Notice that we can slightly modify Hamilton’s definition of C in terms of

ordered pairs of real numbers, as follows. We define C = {(a, b) | a, b ∈ R} where

we define addition as

(1′) (a, b) + (c, d) = (a + c, b + d),

define multiplication as

(2) (a, b)(c, d) = (ac− db∗, a∗d + cb)

(where an asterisk indicates conjugation), and define conjugation of a complex

number as

(3) (a, b)∗ = (a∗,−b).

Since conjugation of a real number has no effect, then this is the same as Hamilton’s

definition of C. We have introduced the unnecessary conjugation to establish a

consistent pattern. First, multiplication in C is commutative and the multiplicative

identity in V is (1, 0). Next, notice that

(a, b)(a, b)∗ = (a, b)∗(a, b) = (a, b)(a,−b) = (a2 + b2,−ab + ba)

= (a2 + b2, 0) = (a2 + b2)(1, 0).

Hence, the (two sided) multiplicative inverse of nonzero (a, b) is

(a, b)−1 =
1

a2 + b2 (a,−b) =

(
a

a2 + b2 ,
−b

a2 + b2

)
.

This technique is the Cayley-Dickson Construction.

Note. We now apply the Cayley-Dickson Construction to create the quaternions

from the complex numbers. We define the quaternions H = {(a, b) | a, b ∈ C}

where we define addition, multiplication, and conjugation as in (1′), (2), and (3):

(a, b)+(c, d) = (a+c, b+d), (a, b)(c, d) = (ac−db∗, a∗d+cb), (a, b)∗ = (a∗,−b).
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Notice that the conjugation is not inert this time, since in the order pairs it is

applied to complex numbers. The multiplicative identity is still (1, 0) (notice that

0 and 1 are treated as complex numbers here), which we denote as 1 = (1, 0). We

define i = (0, 1), j = (i, 0), and k = (0, i) (where i in the ordered pairs is the

complex number i). With c1 = a + bi and c2 = c + di complex, we denote the

quaternion (c1, c2) as

(c1, c2) = ((a, b), (c, d)) = a1 + bi + cj + dk where a, b, c, d ∈ R.

Notice that

i2 = (0, 1)2 = ((0)(0)− (1)(1), (0)(1) + (0)(1)) = (−1, 0) = −1,

j2 = (i, 0)2 = ((i)(i)− (0)(0), (−i)(0) + (i)(0)) = (−1, 0) = −1, and

k2 = (0, i)2 = ((0)(0)− (i)(−i), (0)(i) + (0)(i)) = (−1, 0) = −1.

We have that every real number r ∈ R commutes with i, j, and k: ri = ir, rj = jr,

and rk = kr. Also,

ij = (0, 1)(i, 0) = ((0)(i)− (0)(1), (0)(0) + (i)(1)) = (0, i) = k and

ji = (i, 0)(0, 1) = ((i)(0)− (1)(0), (−i)(1) + (0)(0)) = (0,−i) = −(0, i) = −k

so that ij 6= ji (in fact, ij = −ji = k) and the quaternions are not commutative.

We can similarly verify the familiar quaternionic identities ijk = −1, jk = −kj = i,

and ki = −ik = j. These are the identifying equalities in the definition of the

quaternions as a ring with additive abelian group R⊕R⊕R⊕R; see my online notes

for Modern Algebra 2 (MATH 5410) on Section III.1. Rings and Homomorphism.

The inverse of nonzero (a, b) ∈ H is, as above,

(a, b)−1 =
1

a2 + b2 (a,−b) =

(
a

a2 + b2 ,
−b

a2 + b2

)

https://faculty.etsu.edu/gardnerr/5410/notes/III-1.pdf
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(see my online presentation The Quaternions: An Algebraic and Analytic Explo-

ration for this computation). We can use the representation of a quaternion in

terms of a linear combination of 1, i, j, and k to establish associativity of multipli-

cation and the distribution laws. Therefore, H is a noncommutative division ring

and an associative algebra of dimension 4 over R (a basis is {1, i, j, k}).

Note. The facts that ij = k, jk = i, ki = j, ik = −j, kj = −i, and ji = −k are

commonly illustrated as:

Multiplication of distinct elements of {i, j, k} in a clockwise order produces +1 times

the third element of the set, and multiplication of distinct elements of {i, j, k} in

a counterclockise produces −1 times the third element of the set. You are likely

familiar with this behavior when considering cross-products of vectors in R3; see

my online notes for Calculus 3 (MATH 2110) on Section 12.4. The Cross Product.

Note. Next we can apply the Cayley-Dickson Construction to create the octonions

O from the quaternions. We define addition and multiplication of ordered pairs of

quaternions in the same way as above. This gives a dimension 8 algebra over R.

https://faculty.etsu.edu/gardnerr/talks/Quaternions-Auburn-Beamer.pdf
https://faculty.etsu.edu/gardnerr/talks/Quaternions-Auburn-Beamer.pdf
https://faculty.etsu.edu/gardnerr/2110/notes-12e/c12s4.pdf
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Similar to the treatment of the quaternions, we can take as a basis of the octo-

nions {e0 = 1, e1, e2, e3, e4, e5, e6, e7} so that for a, b, c, d, e, f, g, h ∈ R the octonion(
((a, b), (c, d)), ((e, f), (g, h))

)
is denoted a+ be1 + ce2 +de3 + ee4 +fe5 + ge6 +he7.

We get the following multiplication table for the ei:

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

We have e2
i = −1 for each i ∈ {1, 2, 3, 4, 5, 6, 7}, eiej = −ejei for i 6= j (this is

“anticommutivity”), eiej = ek implies ei+1ej+1 = ek+1 (this is “index cycling”), and

eiej = ek implies e2ie2j = e2k (in this and the previous property, subscripts are

reduced as appropriate; this is “index doubling”). We can use the multiplication

table to show that multiplication is not associative: (e1e2)e3 = e4e3 = −e6 but

e1(e2e3) = e1e5 = e6, so that (e1e2)e3 6= e1(e2e3).

Note. As with the quaternions, we can illustrate the multiplication table of the

octonions with a diagram. The “Fano plane” is explored in Axiomatic and Trans-

formational Geometry (MATH 5330) when covering finite geometry. See my online
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notes for Axiomatic and Transformational Geometry (MATH 5330) on Section 4.1.

Projective Spaces. It also makes an appearance in Graph Theory 1 (MATH 5340)

as an example of a geometric configuration; see my notes for that class on Sec-

tion 1.3. Graphs Arising from Other Structures, and notice Figure 1.15(a). The

following figure is from page 152 of Baez’s paper.

This is a projective plane over the field Z2. It has seven lines, each containing three

points (the points are indicated here by basis elements). The seven lines are the six

collinear vertices in this picture, along with the line consisting of basis elements e1,

e2, and e4 (represented by the circle containing these). In fact, each line should be

interpreted as a directed circle (as in the case of i, j, and k in the quaterions) where

products taken in the direction of the orientation yields a “positive” output and

products opposite to the direction of the orientation yields a “negative” output.

For example (looking at the upper right line), e6e1 = e5, e5e6 = e1, e1e6 = −e5, and

e6e5 = −e1. In fact, the basis elements along any one line of the Fano plane, along

with basis elements e0 = 1, generates a sub-algebra of O which is isomorphic to H.

https://faculty.etsu.edu/gardnerr/Geometry/notes-Finite-Geometries-Ball/Finite-Geometry-Ball-4-1.pdf
https://faculty.etsu.edu/gardnerr/Geometry/notes-Finite-Geometries-Ball/Finite-Geometry-Ball-4-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-1-3.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-1-3.pdf
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Note. Applying the Cayley-Dickson Construction to the octonions, we get a 16-

dimensional algebra over R, called the sedenions and denoted S. Taking the basis

as {e0 = 1, e1, e2, . . . , e15}, we have the multiplication table:

1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

1 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6 e9 −e8 −e11 e10 −e13 e12 e15 −e14

e2 e2 −e3 −1 e1 e6 e7 e4 −e5 e10 e11 −e8 −e9 −e14 −e15 e12 e13

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4 e11 −e10 e9 −e8 −e15 e14 −e13 e12

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3 e12 e13 e14 e15 −e8 −e9 −e10 −e11

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2 e13 −e12 e15 −e14 e9 −e8 e11 −e10

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1 e14 −e15 −e12 e13 e10 −e11 −e8 e9

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1 e15 e14 −e13 −e12 e11 e10 −e9 −e8

e8 e8 −e9 −e10 −e11 −e12 −e13 −e14 −e15 −1 e1 e2 e3 e4 e5 e6 e7

e9 e9 e8 −e11 e10 −e13 e12 e15 −e14 −e1 −1 −e3 e2 −e5 e4 e7 −e6

e10 e10 e11 e8 −e9 −e14 −e15 e12 e13 −e2 e3 −1 −e1 −e6 −e7 e4 e5

e11 e11 −e10 e9 e8 −e15 e14 −e13 e12 −e3 −e2 e1 −1 −e7 e6 −e5 e4

e12 e12 e13 e14 e15 e8 −e9 −e10 −e11 −e4 e5 e6 e7 −1 −e1 −e2 −e3

e13 e13 −e12 e15 −e14 e9 e8 e11 −e10 −e5 −e4 e7 e6 e1 −1 e3 −e2

e14 e14 −e15 −e12 e13 e10 −e11 e8 e9 −e6 −e7 −e4 e5 e2 −e3 −1 e1

e15 e15 e14 −e13 −e12 e11 e10 −e9 e8 −e7 e6 −e5 −e4 e3 e2 −e1 −1

Information seems harder to come by on the sedenions (the information presented

here on the sedenions, including the multiplication table, is from the Wikipedia

page on Sedenions). Since the quaternions are a subalgebra, then they are not

commutative. Since the octonions are a subalgebra, then they are not commutative.

In fact, we can use the table above to show that the sedenions even have zero

divisors:

(e1 + e10)(e5 + e14) = e1e5 + e1e14 + e10e5 + e10e14 = (−e4) + e15 + (−e15) + e4 = 0.

https://en.wikipedia.org/wiki/Sedenion
https://en.wikipedia.org/wiki/Sedenion
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A “division algebra,” by definition, has no zero divisors so that the sedenions are

not a division algebra. Surprisingly, we will see that multiplicative inverses are still

present below.

Note/Definition. An algebra created by starting with R and iterating the Cayley-

Dickson Construction is called a Cayley-Dickson algebra (as is the case on the

Wikipedia page on the Cayley-Dickson Construction). We have (by induction)

that, for any Cayley-Dickson algebra, the condition (a, b)∗(a, b) = k(1, 0) where

k ∈ R and

Note. We now state some formal definitions and results from John C. Baez’s “The

Octonions,” Bulletin of the American Mathematical Society, 39(2), 145–205 (2001).

Definition. An algebra A is a vector space (over R, in these notes) that is equipped

with a bilinear map (that is, linear in both entries) m : A×A → A called multipli-

cation and a nonzero element 1 ∈ A called the unit such that m(1, a) = m(a, 1) = a.

We denote m(a, b) as ab. An algebra A is a division algebra if for any a, b ∈ A with

ab = 0, we have either a = 0 or b = 0. A normed division algebra is an algebra A

that is also a normed vector space with ‖ab‖ = ‖a‖‖b‖.

Note. The bilinear comment in the definition of an algebra means that m(a+b, c) =

m(a, c) + m(b, c) and m(a, b + c) = m(a, b) + m(a, c), which we denote in the more

familiar (a+b)c = ac+bc and a(b+c) = ab+bc. Also, if ‖ab‖ = ‖a‖‖b‖ then ab = 0

implies either a = 0 or b = 0, justifying the name “normed division algebra.”

https://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
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Note. In these notes, we do not assume that an algebra is associative under

multiplication!!! In Modern Algebra 2 (MATH 5420), an algebra is defined over

a commutative ring with identity (which R certainly is) and required to be a ring,

meaning that multiplication is associative under this definition. See my online

notes for Modern Algebra 2 on Section IV.7. Algebras; notice Definition IV.7.1. In

the literature, it is common to use the term “nonassociative algebra” to indicate

that associativity is not assumed. The expression “not associative” is used to

indicate an algebra in which associativity is known not to hold (see pages 1 and

2 of Richard Schafer’s An Introduction to Nonassociative Algebras, NY: Academic

Press, 1966). With the Cayley-Dickson construction we loose associativity fairly

early on (with the construction of the octonions O). Notice that we naturally have

R as a substructure of an algebra since we can associate α ∈ R with α1 ∈ A where

1 is the unit (think of 1 as a vector here).

Definition. An algebra (not necessarily associative) has multiplicative inverses if

for any nonzero a ∈ A there is a−1 ∈ A such that aa−1 = a−1a = 1.

Note. Baez states the following without proof or reference. Your humble instructor

has struggled to find a (reputable) reference!

Theorem CD.1. An associative algebra has multiplicative inverses if and only if

it is a division algebra.

https://faculty.etsu.edu/gardnerr/5410/notes/IV-7.pdf
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Note. The absence of associativity has some weird implications. . . at least for

those of us used to its presence (such as in rings). As evidence, we have the

following observation. Theorem CD.1 need not hold for algebras that are not

associative. We’ll see below that every Cayley-Dickson algebra has multiplicative

inverses, but we already know that the the octonions have zero divisors, so the

octonions have multiplicative inverses yet they are not a division algebra! Beware

that our definition of a division algebra (in terms of zero divisors) is different from

the definition of a division ring (for which multiplicative inverses are required).

Note. Now we more explicitly address conjugation, multiplicative inverses, and

norms. Following Baez, we use the key ideas of a ∗-algebra and nicely normed.

Definition. A conjugation on an algebra A (not necessarily associative) is a real-

valued linear map ∗ : A → A satisfying a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. A

∗-algebra is an algebra equipped with a conjugation. A ∗-algebra A is real if a = a∗

for all a ∈ A. The ∗-algebra is nicely normed if a + a∗ ∈ R and aa∗ = a∗a > 0 for

all nonzero a ∈ A.

Definition. In a nicely normed ∗-algebra, as in C, we can define real part and

imaginary part of elements. We take

Re(a) =
a + a∗

2
∈ R and Im(a) =

a− a∗

2
.

Define a norm on A by ‖a‖ =
√

aa∗.
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Theorem CD.2. If A is a nicely normed ∗-algebra, then every nonzero element

has a multiplicative inverse. Namely, for a ∈ A, a 6= 0, we have a−1 = a∗/‖a‖2.

Definition. We consider three levels of associativity. An algebra is power-associative

if the subalgebra generated by any one element is associative. It is alternative if

the subalgebra generated by any two elements is associative. If the subalgebra

generated by any three elements is associative, then the algebra is associative.

Note/Schafer’s Theorem 3.1. Richard Schafer in his An Introduction to Nonas-

sociative Algebras, states a theorem (Theorem 3.1, which he credits to Emil Artin)

that an algebra A is alternative if and only if we have

(aa)b = a(ab), (ab)a = a(ba), and (ba)a = b(aa).

In fact, any two of these equations implies the remaining one, so it is common to

take the first and last as the definition of alternative.

Theorem CD.3. If ∗-algebra A is nicely normed and alternative, then A is a

normed division algebra.

Note. We now state five propositions from Baez and give proofs (which Baez de-

clare as “. . . straightforward calculations; to prove them here would merely deprive

the reader of the pleasure of doing so” see his page 155). Some of the proofs are

lengthy because we show all details. The absence of commutativity is familiar, but

the possible absence of associativity is strange and we deal with it with care.
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Proposition 1. Starting with any ∗-algebra A, the new ∗-algebra A′ that results

from the Cayley-Dickson Construction is not real.

Proposition 2. ∗-algebra A is real (and thus commutative) if and only if Cayley-

Dickson algebra A′ constructed from A is commutative.

Proposition 3. ∗-algebra A is commutative and associative if and only if Cayley-

Dickson algebra A′ constructed from A is associative.

Proposition 4. ∗-algebra A is associative and nicely normed if and only if Cayley-

Dickson algebra A′ constructed from A is alternative and nicely normed.

Proposition 5. ∗-algebra A is nicely normed if and only if Cayley-Dickson algebra

A′ constructed from A is nicely normed.

Note. We now apply Propositions 1 through 5 to deduce properties of Cayley-

Dickson ∗-algebras. First, we know that R is real, commutative, associative, and

nicely normed (by absolute value), so that C is commutative (Proposition 2), asso-

ciative (Proposition 3), and nicely normed (Proposition 5). Next, H is associative

(Proposition 3) and nicely normed (Proposition 5). Then O is alternative and

nicely normed (Proposition 4). Since C is not real, then H is not commutative by

Proposition 2 (also, recall that ij = k 6= ji = −k). Since H is not commutative,

then O is not associative by Proposition 3 (also, recall that (e1e2)e3 6= e1(e2e3)). Of

course, once a property (such as associativity) is lost by a Cayley-Dickson ∗-algebra,

then it does not hold in any of the subsequent Cayley-Dickson ∗-algebras (since

the earlier ∗-algebras are substructures of the later ∗-algebras). By Proposition 5,
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all Cayley-Dickson ∗-algebras are nicely normed. Since each of R, C, H, and O are

nicely normed and alternative, then they are normed division algebras by Theorem

CD.C. Since O is not associative, then the sedenions S are not alternative and so

may not be a division algebra. In fact, we saw above that the sedenions have zero

divisors, (e1 + e10)(e5 + e14) = 0, and so S is not a division algebra. However, all

Cayley-Dickson ∗-algebras are nicely normed and so have multiplicative inverses

by Theorem CD.2.

Note. As a closing comment, we mention that you may be familiar with a commu-

tator in a ring: [a, b] = ab − ba. (This is not to be confused with the commutator

in a group: aba−1b−1.) In a commutative ring, the commutator is always 0, so it is

(when nonzero) a measure of the failure of commutivity in a noncommutative ring.

You may also encounter this idea in quantum mechanics as applied to operators (see

my online notes for Hilbert Spaces and Applications, at one time used in Applied

Mathematics 1 [MATH 5610], on Section 7.3. Basic Concepts and Postulates of

Quantum Mechanics). In fact, the Uncertainty Principle can be expressed in terms

of the expectation value of a commutator of Hermitian operators (see Theorem

7.4.1 in the Hilbert space notes). Since we see that a Cayley-Dickson algebra may

not be associative, we can similarly define an associator as [a, b, c] = (ab)c− a(bc)

for a, b, c in the Cayley Dickson algebra. Similarly to the commutator, the associ-

ator is 0 when associativity holds and (when nonzero) is a measure of the failure

of associativity in a nonassociative Cayley-Dickson algebra.
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