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Chapter 7. Selected Topics

Section 7.4. Integral Quaternions and

the Four-Square Theorem

Note. In Elementary Number Theory (MATH 3120), we proved that every positive

integer can be written as the sum of four squares of integers. See Lagrange’s

Four-Square Theorem (Theorem 19.1) in my online notes on Section 19. Sums of

Four Squares. The result is called “Lagrange’s Four-Square Theorem” because it

was proved by Joseph Louis Lagrange in 1770. Historical details can be found

in the number theory notes just mentioned. In this section, we introduce the

noncommutative division ring of real quaternions and use it to give a proof of

Lagrange’s result. We’ll consider a subring H of the quaternions (a ring similar

to the Guassian integers from C, but based on “integral quaternions”) and classify

the left ideals of H (in Lemma 7.4.6). This will lead to our proof of Lagrange’s

Four-Square Theorem.

Note. We denote the noncommutative division ring of real quaternions as Q (also

often denoted H in commemoration Sir William Rowan Hamilton who introduced

them in 1843). A formal definition of the quaternions is given in Modern Algebra 2

(MATH 5420) in Section III.1. Rings and Homomorphism and in Quaternions—An

Algebraic View (Supplement).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-19.pdf
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-19.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/III-1.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/Quaternions-Algebraic-Supplement.pdf
https://faculty.etsu.edu/gardnerr/5410/notes/Quaternions-Algebraic-Supplement.pdf
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Definition. For x = α0 + α1i + α2j + α3k in Q, the adjoint (or conjugate) of x,

denoted x∗, is defined as x∗ = α0 − α1i− α2j − α3k.

Lemma 7.4.1. The adjoint in Q satisfies:

1. x∗∗ = x,

2. (δx + γy)∗ = δx∗ + γy∗, and

3. (xy)∗ = y∗x∗

for all x, y ∈ Q and for all real δ and γ.

Definition. If x ∈ Q then the norm of x, denoted N(x), is defined as N(x) = xx∗.

Note. We might be interested more in the “modulus” of x ∈ Q which we should

define as |x| =
√

xx∗. However, this idea of a norm N is common in the number

theory setting. For example, in the Gaussian integers {a + bi | a, b ∈ Z} the norm

is defined as N(a + bi) = a2 + b2 = |a + bi|2. See my online notes for Mathematical

Reasoning (MATH 3000) on Section 7.2. The Gaussian Integers.

Lemma 7.4.2. For all x, y ∈ Q we have N(xy) = N(x)N(y).

Note. The next result is just a restatement of Lemma 7.4.2, but in terms of the

“parts” of quaternions x = α0 + α1i + α2j + α3k and y = β0 + β1i + β2j + β3k.

https://faculty.etsu.edu/gardnerr/3000/notes-MR/Gerstein-7-2.pdf
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Lemma 7.4.3. Lagrange Identity.

If α0, α1, α2, α3 and β0, β1, β2, β3 are real numbers then

(α2
0 + α2

1 + α2
2 + α2

3)(β
2
0 + β2

1 + β2
2 + β2

3) = (α0β0 − α1β1 − α2β2 − α3β3)
2

+(α0β1 + α1β0 + α2β3 − α3β2)
2 + (α0β2 − α1β3 + α2β0 + α3β1)

2

+(α0β3 + α1β2 − α2β1 + α3β0)
2.

Note. The Lagrange Identity (Lemma 7.4.3) expresses the sum of four squares

times the sum of another four squares equals the sum (in a specific way) of a

sum of four squares. The identity is given in Note 19.A of my online Elementary

Number Theory (MATH 3120) notes on Section 19. Sums of Four Squares. Similar

to the Gaussian integers which are a subring of the complex numbers, we have the

following subring of the quaternions.

Definition. The Hurwitz ring is the ring of integral quaternions:

H = {m0ζ + m1i + m2j + m3k | m0, m1, m2, m3 ∈ Z},

where ζ = 1
2(1 + i + j + k).

Note. Notice that the norm of ζ is 1, N(ζ) = ζζ∗ = 1
4(1

2 + 12 + 12 + 12) = 1. In

fact, every element of the Hurwitz ring is of norm a positive integer, as we claim

next (along with the fact that H actually is a ring). That’s why we refer to the

“integral quaternions.” We leave the proof of the next result “to the reader” (it is

straightforward).

https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-19.pdf
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Lemma 7.4.4. H is a subring of Q. If x ∈ H then x∗ ∈ H and N(x) is a positive

integer for every nonzero x ∈ H.

Note. It might seem odd (it does to me!) to consider the Hurwitz ring as the

subring of Q instead of simply the ring

Q0 = {m0 + m1i + m2j + m3k | m0, m1, m2, m3 ∈ Z}.

The reason we consider the larger ring H is because it has the properties we need to

characterize its left-ideals. This is needed in our proof of Lagrange’s Four-Square

Theorem. Before classifying the left-ideals, we need a lemma.

Lemma 7.4.5. Left-Division Algorithm.

Let a, b ∈ H with b 6= 0. Then there exists two elements c, d ∈ H such that

a = cb + d and N(d) < N(b).

Note. Recall from Introduction to Modern Algebra 2 (MATH 4137/5137) (see my

online notes on Section V.26. Homomorphisms and Factor Rings; notice Definition

26.10) that:

Definition. An additive subgroup N of a ring R satisfying the property

aN ⊆ N for all a ∈ R is a left-ideal. An additive subgroup N of a ring

R satisfying the property Nb ⊆ N for all b ∈ R is a right-ideal. An

additive subgroup N of a ring R tht is both a left-ideal and a right-ideal

is an ideal.

Now for the classification of left-ideals of H.

https://faculty.etsu.edu/gardnerr/4127/notes/V-26.pdf
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Lemma 7.4.6. Let L be a left-ideal of H. Then there exists an element u ∈ L

such that every element in L is a left-multiple of u; in other words, there exists

u ∈ L such that every x ∈ L is of the form x = ru where r ∈ H.

Note. We need one more lemma.

Lemma 7.4.7. If a ∈ H then a−1 ∈ H if and only if N(a) = 1.

Note. We will also need the well-known Wedderburn’s Theorem, which states

that every finite division ring is a field. This is stated in Introduction to Modern

Algebra (MATH 4127/5127); see Theorem 24.10 of Section 24 “Noncommutative

Examples” in John Fraleigh’s A First Course In Abstract Algebra, 7th Edition,

Addison Wesley (2003). It is proved (twice) in Isreal Herstein’s Topics in Algebra,

2nd Edition, John Wiley & Sons (1975) in Section 7.2 “Wedderburn’s Theorem

on Finite Division Rings” as Theorem 7.2.1. It is (potentially) proved in Modern

Algebra (MATH 5410/5420); see Thomas W. Hungerford’ Algebra, Springer-Verlag

(1974) in Section IX.6 “Division Algebras” as Corollary IX.6.9 (and a different proof

based on cyclotomic polynomials it to be given in Exercise V.8.10).

Note. In Thomas W. Hungerford’ Algebra, Springer-Verlag (1974) in Section III.2

“Ideals,” we have the following as Exercise III.2.5:

Lemma 7.4.A. A ring R with identity is a division ring if and only if

R had no proper, nontrivial left ideals.
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The “only if” part of this claim appears Isreal Herstein’s Topics in Algebra, 2nd

Edition, John Wiley & Sons (1975) in in Section 3.5 “More Ideals and Quotient

Rings” as Exercise 3.5.1.

Note 7.4.A. We need one final claim before presenting Lagrange’s Four-Square

Theorem. We claim that in the Hurwitz ring H,

V = {x0ζ + x1i + x2j + x2k | p divides all of x0, x1, x2, x3}

is a two-sided ideal and that the quotient ring H/V is isomorphic to

Wp = {α0 + α1i + α2j + α3k | α0, α1, α3, α3 ∈ Zp}.

We leave this as an exercise. Now we are ready to state and prove our main result.

Theorem 7.4.1. Lagrange’s Four-Square Theorem.

Every positive integer can be expressed as the sum of squares of four integers.

Note. A generalization of the Four-Square Theorem was introduced by British

mathematician Edward Waring (circa 1736–August 15, 1798) in 1770. Waring’s

problem asks whether each k ∈ N has an associated positive integer s such that

every natural number is the sum of at most s natural numbers raised to the power k.

The answer for k = 2 is “yes” and we see that s ≥ 4 in this case. In fact the answer

is “yes” for all k ∈ N, as shown by David Hilbert in “Beweis für die Darstellbarkeit

der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem),”

Mathematische Annalen 67(3), 281–300 (1909). A copy can be viewed online on the
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Springer webpage (accessed 4/19/2022). For k ∈ N, define g(k) as the minimum

value of s which guarantees that every natural number is the some of s natural

numbers raised to the power k. The Four-Square Theorem shows that g(2) = 4.

Other known values of g are: g(1) = 1 (trivially), g(3) = 9, g(4) = 19, g(5) = 37,

and g(6) = 73 (according to the Wikipedia page on Waring’s Problem (accessed

4/19/2022). Additional historical details are in my online notes for Elementary

Number Theory (MATH 3120) on Section 18. Sums of Two Squares.

Revised: 4/25/2022

https://link.springer.com/chapter/10.1007/978-3-642-50831-8_11
https://en.wikipedia.org/wiki/Waring%27s_problem
https://faculty.etsu.edu/gardnerr/3120/notes-Dudley/Dudley-Section-18.pdf

