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Supplement. Algebraic Closure of a Field

Note. In this supplement, we give some background material which is used in the

proof of Fraleigh’s Theorem 31.17/31.22 (Every field has an algebraic closure). All

proofs require some set theoretic background.

Definition 31.1. An extension field E of field F is an algebraic extension of F if

every element in E is algebraic over F .

Note. The following result is a big deal and should probably be part of Fraleigh’s

“basic goal.” This result simply claims the existence of an algebraic closure of a

field but, as we’ll see, neither the result nor its proof give insight as to how to

construct the algebraic closure of a field.

Theorem 31.17/31.22. Every field F has an algebraic closure; that is, an alge-

braic extension F that is algebraically closed.

Note. We now introduce the ideas necessary to prove that every field has an

algebraic closure (Theorem 31.17/31.22). We need some ideas from set theory.
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Definition 31.19. A partial ordering of a set S is given by a relation denoted

≤ defined for certain ordered pairs of elements of S such that the following are

satisfied:

1. a ≤ a for all a ∈ S (Reflexive Law).

2. If a ≤ b and b ≤ a then a = b (Antisymmetric Law).

3. If a ≤ b and b ≤ c then a ≤ c (Transitive Law).

If for a, b ∈ S we have either a ≤ b or b ≤ a then a and b are comparable. A subset

T ⊆ S is a chain if every two elements a and b in T are comparable. An element

u ∈ S is an upper bound for subset A of S if a ≤ u for all a ∈ A. An element m of

S is maximal if there is no s ∈ S such that m ≤ s.

Example. Consider the sets A = ∅, B = {1}, C = {2}, D = {3}, E = {1, 2},

F = {1, 3}, and G = {2, 3}. Define S = {A,B,C,D,E, F,G}. For sets X and

Y in S, define X ≤ Y if X ⊆ Y . Then A ≤ X for all X ∈ S. Also, B ≤ E,

B ≤ F , C ≤ E, C ≤ G, D ≤ F and D ≤ G. The remaining pairs of sets are

not comparable. Set S has no upper bound. Set {A,B,C,E} has E as an upper

bound. for set S, maximal elements are E, F , and G. Set T = {A,B, F} is a chain

in S.

Lemma 31.21. Zorn’s Lemma.

If S is a partially ordered set such that every chain in S has an upper bound in S,

then S has at least one maximal element.
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Note. Zorn’s Lemma is equivalent to the famous Axiom of Choice, which has

some surprising consequences in measure theory (to drop some verbiage, a “non-

Lebesgue-measurable set” and the “Banach-Tarski Paradox”). Zorn’s Lemma can

be used to show that every vector space has a basis (notice that the definition of

vector space did not require the existence of a basis). We need Zorn’s Lemma for

the proof of Theorem 31.17/31.22.

Note. Russell’s Paradox from set theory implies that there can be no “largest set”

nor a “set of all sets.” Russell’s Paradox results from the 19th century approach

to sets which did not have a clear way of constructing new sets from old (“sets”

were still viewed informally). The fallout of Russell’s Paradox was to inspire an

axiomatic development of set theory (lead by Russell and Whitehead’s Principia

Mathematica of circa 1910). For more details on Russell’s Paradox, see my notes

on Analysis 1 (MATH 4217/5217):

http://faculty.etsu.edu/gardnerr/4217/notes/1-1.pdf.

Note. Georg Cantor (1845–1918) introduced the concept of the cardinality of an

infinite set. We denote the cardinality of set A as |A|. Cantor’s Theorem states

that for any set A, the cardinality of the power set of set A, denoted P(A), is

strictly greater than the cardinality of set A: |P(A)| > |A|. For details, see my

notes from Analysis 1 (MATH 4217/5217):

http://faculty.etsu.edu/gardnerr/4217/notes/1-3.pdf
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Note. Fraleigh gives a proof on pages 290 and 291. You can find an alternate

proof in Hungerford’s Algebra in Section V.3, but the proof requires a number of

other results in Hungerford (some of them deep, set theoretic results). Another

proof is given in Dummit and Foote’s Abstract Algebra, 3rd Edition, John Wiley

and Sons (2004), Section 13.4. This proof uses results concerning ideals and maxi-

mal ideals, but otherwise is pretty much independent of other results in the book.

An additional interesting source is given by Hanspeter Fischer of Ball State Uni-

versity. His proof is given as a supplement to his notes and is posted online (see

http://www.cs.bsu.edu/homepages/fischer/math412/Closure.pdf).

Note. The proof of Theorem 31.17/21.22 is unlike much of the rest of the content

of this class because the proof is largely set-theoretic, instead of algebraic (though

some of the details are algebraic which must be verified in order to apply the st

theoretic approach). We break the proof into three parts. FIRST, in order to apply

Zorn’s Lemma we need to insure that all of the extension fields of field F we deal

with are in the same set, Ω. SECOND, for any chain of fields, we construct an

upper bound for the chain. THIRD, we show that the upper bound is a maximal

element of the set of algebraic extension fields of F and that it is (with a proof

by contradiction) algebraically closed. This “maximal element” approach will not

necessarily guarantee uniqueness of the algebraic closure of field F .

Theorem 31.17/31.22. Every field F has an algebraic closure; that is, an alge-

braic extension F that is algebraically closed.
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Proof.

I. Construction of a set Ω large enough to contain all algebraic extensions of field

F .

For a given field F , form a set A which has an element for every possible zero of a

polynomial in F [x]:

A = {ωf,i | f(x) ∈ F [x], i = 1, 2, . . . , (degree of f)}.

The idea here is that for any polynomial f(x) = a0+a1x+a2x
2 + · · ·+anx

n ∈ F [x],

there are at most n zeros, one for such ωf,1, ωf,2, . . . , ωf,n. So for every zero of every

polynomial in F [x] (and hence for every element of E an algebraic extension of F ,

see Definition 31.1) there is an element of S.

The elements of a field are simply elements of a set. In

the following arguments, we’ll deal with fields consisting

of elements of F and another set—we need not concern

ourselves with what the elements of the other set are, simply

that a field exists consisting of these elements.

Consider the power set P(A). By Cantor’s Theorem (see above), |P(A)| > |A|.

Now, for each a ∈ F , we have a as a zero of fa(x) = x− a and so there is ωfa,1 ∈ A

and hence {ωfa,1} ∈ P(A). Define set Ω as

Ω = (P(A) \ ∪a∈F{ωfa,1}) ∪ {a | a ∈ F}.

That is, replace each {ωfa,1} ∈ P(A) with a ∈ F . Then F ⊆ Ω.

Now consider all possible fields that can be defined on the elements of Ω that are

algebraic extensions of F . Denote the set of all such fields as E . Since E ⊆ P(Ω),

then set E actually exists.
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Recall from Russell’s Paradox that we can’t simply define a

set in an arbitrary way, such as “the set of all sets” or “the

set of all algebraic extensions of F ,” and that’s why we take

this approach of defining set A and considering power sets

A and Ω.

Also, F ∈ E , so E is nonempty.

Let E be an algebraic extension field of F with γ ∈ E a zero of f(x) ∈ F [x]

and γ /∈ F . Say deg(γ, F ) = n. Then every element of F (γ) is of the form

a0 + a1γ + a2γ
2 + · · · + an−1γ

n−1 by Theorem 29.18. Now pick ω ∈ Ω, ω /∈ F , and

“rename” γ as ω. Also rename the element a0 +a1γ +a2γ
2 + · · ·+an−1γ

n−1 of F (γ)

by distinct elements of Ω as the ai range over F .

For any infinite set, the set of all finite-tuples from the set

has the same cardinality as the original set (though I need

a reference for this result!). So set Ω is large enough to do

this renaming with distinct elements of F .

The renamed F (γ) (now “named” F (ω)) is an algebraic extension field of F where

F (ω) ⊂ Ω and f(ω) = 0.

For all algebraic extension fields Ej of F , with Ej ⊂ Ω (after the “renaming”

above), form a set S = {Ej | j ∈ J}. Set S is partially ordered by subfield inclusion

≤. F ∈ S, so S is nonempty.

II. Showing that every chain in S has an upper bound in S.

Let T = {Ejk
| k ∈ K} be a chain in S, and let W = ∪k∈KEjk

. We will (a) make

W into a field, (b) show that W is an algebraic extension of F , and (c) show that

W is an upper bound for T .
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(a) The same elements of set W can form different fields under different binary

operation + and ·, so we need to define + and · on W in a uniform way. Let

α, β ∈ W . Then α ∈ Ej1 and β = Ej2 for some Ej1, Ej2 ∈ S. Since T is a chain

under subfield inclusion, one of these is a subfield of the other. Say, WLOG,

Ej1 ≤ Ej2 . Then α, β ∈ Ej2. So define (in W ) the sum α +W β as the sum

α +j2 β ∈ Ej2. Similarly define the product α ·W β as α ·j2 β ∈ Ej2. We simply

denote these elements of W as α + β and αβ.

Notice that these definitions of + and · in W are well-

defined. If αβ ∈ Ej3 then, since T is a chain, then either

Ej2 ≤ Ej3 or Ej3 ≤ Ej2. In either case, the sum and product

of α and β are the same fields and so + and · in W is

unambiguously defined.

Now we verify that W is a field. We address this using the definition of a

field as a commutative division ring (Definition 18.16). Since + and · in W is

defined using fields in chain T , then commutivity and associativity is inherited

from the fields in T . For any α ∈ W , we have 0, 1, α ∈ Ejk
for some Ejk

∈ T ,

and so 0 + α = α + 0 = α and 1 · α = α · 1 = α since Ejk
is a field. Also, if

α 6= 0, then there is −α, α−1 ∈ Ejk
such that α + (−α) = (−α) + α = 0 and

αα−1 = α−1α = 1. For α, β, γ ∈ W , since T is a chain, there is some Ejk
∈ S

such that α, β, γ ∈ Ejk
. then α(β + γ) = αβ + αγ since Ejk

is a field, and do

left distribution (and hence right distribution) holds in W . So W is a field.

(b) For any α ∈ W , we have α ∈ Ejk
for some Ejk

∈ T . Since Ejk
is an algebraic

extension of F , then α is algebraic over F . So W is an algebraic extension

field of field F . Therefore, W ∈ S.
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(c) By construction, Ejk
≤ W for all Ejk

∈ T , so W ∈ S is an upper bound for

chain T .

III. Showing that a maximal element of S is an algebraic closure of F .

Since for arbitrary chain T in S there is an upper bound W of T with W ∈ S, then

the hypotheses of Zorn’s Lemma are satisfied. Therefore, Zorn’s Lemma implies

that there is a maximal element F of S. We now show that F is algebraically closed.

Let f(x) ∈ F [x] where f(x) is a nonconstant polynomial (i.e., f(x) /∈ F ). ASSUME

that f(x) has no zero in F . Then take ω ∈ Ω, where ω /∈ F and ω is a zero of f(x),

and form the field F (ω) ⊆ Ω, as in Part I of the proof. Let β ∈ F (ω). Then by

Theorem 30.23, β is a zero of a polynomial g(x) = α0 + α1x + α2x
2 + · · ·+ αnx

n in

F [x] where αi ∈ F . Since F ∈ S (the set of all algebraic extensions of F ) then F is

an algebraic extension of F and so each αi is algebraic over F . By Theorem 31.11

the field F (α0, α1, . . . , αn), we also see that F (α0, α1, . . . , αn, β) is a finite extension

over F (α0, α1, . . . , αn) (again, by Theorem 31.11). In fact, by Theorem 31.4,

[F (α0, α1, . . . , αn, β) : F ] = [F (α0, α1, . . . , αn, β) : F (α0, α1, . . . , αn)][F (α0, α1, . . . , αn) : F ]

and so F (α0, α1, . . . , αn, β) is a finite extension of F . By Theorem 31.3, F (α0, α1,

. . . , αn, β) is therefore an algebraic extension of F and so β is algebraic over F .

Since β ∈ F (ω) is arbitrary, then F (ω) is an algebraic extension of F and so

F (ω) ∈ S. But then F < F (ω) where F (ω) ∈ S, contradicting the choice of F as a

maximal element of S. Therefore, the assumption that f(x) has no zero in F [x] is

false. Since f(x) ∈ F [x] is arbitrary, then we have shown that every nonconstant

polynomial has a zero in F . That is, F is algebraically closed. Since F ≤ F , then

F has an algebraic closure F (that is, F is an algebraically closed extension field

of F ).
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Note. In Section 49 we will see that the algebraic closure of a field is unique in

the following sense:

Corollary 49.5. Let F and F
′
be two algebraic closures of F . Then F is isomor-

phic to F
′
under an isomorphism leaving each element of F fixed.
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