Supplement. The Alternating Groups A_{n} are Simple for $n \geq 5$

Note. Recall that a group is simple if it is nontrivial and has no proper nontrivial normal subgroups. In this supplement, we follow the hints of Fraleigh in Exercise 15.39 and prove that A_{n} is simple for $n \geq 5$.

Theorem 15.15. The alternating group A_{n} is simple for $n \geq 5$.
Proof. (Exercise 15.39.)
(a) For $n \geq 3, A_{n}$ contains every 3 -cycle.

Proof. Recall that A_{n} contains all even permutations (those permutations that are a product of an even number of transpositions). Since the 3 -cycle $(a, b, c)=$ $(a, c)(a, b)$ (remember to read from right to left), then every 3-cycle is an even permutation and hence is in A_{n}.
(b) For $n \geq 3, A_{n}$ is generated by the 3 -cycles.

Proof. Let $\sigma \in A_{n}$. Then σ is a product of an even number of permutations, say

$$
\sigma=\left(a_{1}, b_{1}\right)\left(c_{1}, d_{1}\right)\left(a_{2}, b_{2}\right)\left(c_{2}, d_{2}\right) \cdots\left(a_{k}, b_{k}\right)\left(c_{k}, d_{k}\right)
$$

where these $a_{i}, b_{i}, c_{i}, d_{i}$ for $i=1,2, \ldots, k$ may not be distinct. Now we consider the pairs of transpositions in terms of repeated elements. (1) If for some $j, a_{j}, b_{j}, c_{j}, d_{j}$ are distinct, then $\left(a_{j}, b_{j}\right)\left(c_{j} d_{j}\right)=\left(a_{j}, c_{j}, b_{j}\right)\left(a_{j}, c_{j}, d_{j}\right)$. (2) If for some j, a_{j}, b_{j}, d_{j} are distinct, but $a_{j}=c_{j}$, then

$$
\left(a_{j}, b_{j}\right)\left(c_{j}, d_{j}\right)=\left(a_{j}, b_{j}\right)\left(a_{j}, d_{j}\right)=\left(a_{j}, b_{j}, c_{j}\right)
$$

(3) If for some $j, a_{j}=c_{j}$ and $b_{j}=d_{j}$ then

$$
\left(a_{j}, b_{j}\right)\left(c_{j}, d_{j}\right)=\left(a_{j}, b_{j}\right)\left(a_{j}, b_{j}\right)=\iota,
$$

the identity permutation, and this pair of transpositions can be eliminated from the representation of σ in terms of the k pairs of transpositions.

These three types of pairs of transpositions are the only types possible (rememeber, $a_{j} \neq b_{j}, c_{j} \neq d_{j}$, and the order in a transposition is irrelevant). So each pair of transpositions in the representation of σ given above can be (1) replaced with a product of two 3 -cycles, (2) replaced with a single 3 -cycle, or (3) omitted from the product (respectively). Therefore, σ can be written as a product of 3 -cycles and the 3 -cycles generate A_{n}.
(c) Let r and s be distinct fixed elements of $\{1,2, \ldots, n\}$ for $n \geq 3$. Then A_{n} is generated by the n "special" 3 -cycles of the form (r, s, i) for $1 \leq i \leq n, i \neq r, i \neq s$. Proof. Let r and s be given. Then a 3-cycle in the generating set of A_{n} as given in (b) may (1) contain neither r nor s and be of the form $(a, b, c),(2)$ contain r only and be of the form $(r, a, b),(3)$ contain s only and be of the form (s, a, b), or (4) contain both r and s and be of the form (r, s, a) or be of the form (s, r, a). Following the hint:

$$
\begin{gathered}
(r, s, a)^{2}(r, s, c)(r, s, b)^{2}(r, s, a)=(a, b, c) \\
(r, s, b)(r, s, a)^{2}=(r, a, b) \\
(r, s, b)^{2}(r, s, a)=(s, a, b) \\
(r, s, a)=(r, s, a) \\
(r, s, a)^{2}=(s, r, a)
\end{gathered}
$$

So every possible 3-cycle in A_{n} can be written as a product of 3-cycles of the form (r, s, i) where r and s are given and $1 \leq i \leq n$.
(d) Let N be a normal subgroup of A_{n} for $n \geq 3$. If N contains a 3 -cycle, then $N=A_{n}$.

Proof. Let (r, s, a) be the 3 -cycle in N and let $b \in\{1,2, \ldots, n\}$ where $b \neq r$ and $b \neq s$. Then $(a, b)(r, s) \in A_{n}$ since this is an even permutation. Also,

$$
((a, b)(r, s))^{-1}=(r, s)^{-1}(a, b)^{-1}=(r, s)(a, b) \in A_{n}
$$

since A_{n} is a group. Since N is a normal subgroup, then by Theorem 14.13,

$$
((a, b)(r, s))(r, s, a)((r, s)(a, b))^{-1}=(a, b)(r, s)(r, s, a)(r, s)(a, b)=(r, s, b) \in N .
$$

Since b is an arbitrary element of $\{1,2, \ldots, n\}$ (other than the restriction $b \neq r$, $b \neq s$), then N contains all of the "special" 3-cycles of part (c). Therefore, by part (c), $N=A_{n}$.
(e) Let N be a nontrivial normal subgroup of A_{n} for $n \geq 5$. Then one of the following cases must hold. In each case, $N=A_{n}$.

Case I. N contains a 3 -cycle.
Case II. N contains a product of disjoint cycles, at least one of which has length greater than 3 .

Case III. N contains a disjoint product of the form $\sigma=\mu\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)$ (where $\mu \in A_{n}$).

Case IV. N contains a disjoint product of the form $\sigma=\mu\left(a_{1}, a_{2}, a_{3}\right)$ where μ is a product of an even number of disjoint 2-cycles.

Case V. N contains a disjoint product σ of the form $\sigma=\mu\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}\right)$ where μ is a product of an even number of disjoint 2-cycles.

Proof. To see why at least one of Case I-V must hold, we consider writing the elements of N as disjoint products of cycles (which can be done by Theorem 9.8). Case II describes the situation in which there is a permutation which is the product of disjoint cycles, at least one of which has length greater than 3. So if Case II does not hold, then all elements of N can be written as a disjoint product of cycles of lengths 2 and 3 (we omit cycles of length 1-i.e., fixed points). Case V covers the case where N contains a permutation consisting of no 3 -cycles and a bunch of 2-cycles (i.e., transpositions). Case I covers the case where N contains a permutation consisting of a single 3-cycle alone. Case IV covers the case where N contains a permutation consisting of a single 3-cycle and a bunch of 2-cycles. Case III covers the case where N contains a permutation consisting of two or more 3 -cycles. Therefore, in terms of decompositions of permutations into disjoint cycles and with an eye towards 3-cycles, if Case II does not hold, then at least one of Case I, III, IV, or V must hold.

Now we explore Cases I-V to show that each implies that $N=A_{n}$ and therefore that A_{n} has no proper nontrivial normal subgroup for $n \geq 5$ (that is, A_{n} is simple for $n \geq 5$).

Case I. If N contains a 3 -cycle, then by part (d), $N=A_{n}$ and A_{n} is simple (in fact, this holds for $n \geq 3$).

Case II. If N contains a permutation of the form $\sigma=\mu\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ where $r>3$ and μ contains none of $a_{1}, a_{2}, \ldots, a_{r}$, then $\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1} \in N$ since N is a normal subgroup (by Theorem 14.13). So

$$
\begin{gathered}
\sigma^{-1}\left(\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1}\right) \\
=\left(a_{r}, \ldots, a_{2}, a_{1}\right) \mu^{-1}\left(a_{1}, a_{2}, a_{3}\right) \mu\left(a_{1}, a_{2}, \ldots, a_{r}\right)\left(a_{3}, a_{2}, a_{1}\right)
\end{gathered}
$$

$$
\begin{gathered}
=\mu^{-1} \mu\left(a_{r}, \ldots, a_{2}, a_{1}\right)\left(a_{1}, a_{2}, a_{3}\right)\left(a_{1}, a_{2}, \ldots, a_{r}\right)\left(a_{3}, a_{2}, a_{1}\right) \\
\text { since } \mu \text { and } \mu^{-1} \text { are disjoint from the other cycles } \\
=\left(a_{r}, \ldots, a_{2}, a_{1}\right)\left(a_{1}, a_{2}, a_{3}\right)\left(a_{1}, a_{2}, \ldots, a_{r}\right)\left(a_{3}, a_{2}, a_{1}\right)=\left(a_{1}, a_{3}, a_{r}\right) \in N
\end{gathered}
$$

So A_{n} contains a 3 -cycle and by part (d) $N=A_{n}$ and A_{n} is simple (in fact, this holds for $n \geq 4$).

Case III. If N contains a permutation of the form $\sigma=\mu\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)$ where μ contains none of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$, then $\left(a_{1}, a_{2}, a_{4}\right) \sigma\left(a_{1}, a_{2}, a_{4}\right)^{-1} \in N$ since N is a normal subgroup (by Theorem 14.13). So

$$
\begin{gathered}
\sigma^{-1}\left(\left(a_{1}, a_{2}, a_{4}\right) \sigma\left(a_{1}, a_{2}, a_{4}\right)^{-1}\right) \\
=\left(a_{3}, a_{2}, a_{1}\right)\left(a_{6}, a_{5}, a_{4}\right) \mu^{-1}\left(a_{1}, a_{2}, a_{4}\right) \mu\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, a_{2}, a_{1}\right) \\
=\left(a_{3}, a_{2}, a_{1}\right)\left(a_{6}, a_{5}, a_{4}\right)\left(a_{1}, a_{2}, a_{4}\right)\left(a_{4}, a_{5}, a_{6}\right)\left(a_{1}, a_{2}, a_{3}\right)\left(a_{4}, a_{2}, a_{1}\right) \\
\text { since } \mu \text { and } \mu^{-1} \text { are disjoint from the other cycles }
\end{gathered}
$$

$$
=\left(a_{1}, a_{4}, a_{2}, a_{6}, a_{3}\right) \in N
$$

So N contains a cycle of length greater than 3 and by Case II, $N=A_{n}$ and a_{n} is simple (notice this case requires $n \geq 6$).

Case IV. If N contains a permutation of the form $\sigma=\mu\left(a_{1}, a_{2}, a_{3}\right)$ where μ contains none of a_{1}, a_{2}, a_{3}, and is a product of disjoint 2-cycles, then

$$
\begin{gathered}
\qquad \sigma^{2}=\mu\left(a_{1}, a_{2}, a_{3}\right) \mu\left(a_{1}, a_{2}, a_{3}\right) \\
=\mu^{2}\left(a_{1}, a_{2}, a_{3}\right)\left(a_{1}, a_{2}, a_{3}\right) \text { since } \mu \text { is disjoint from the 3-cycles } \\
=\left(a_{1}, a_{2}, a_{3}\right)\left(a_{1}, a_{2}, a_{3}\right) \text { since } \mu^{2}=\iota \text { because } \mu \text { is a product of disjoint 2-cycles } \\
=\left(a_{1}, a_{3}, a_{2}\right) \in N .
\end{gathered}
$$

Case V. If N contains a permutation of the form $\sigma=\mu\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}\right)$ where μ contains none of $a_{1}, a_{2}, a_{3}, a_{4}$ and μ is a product of an even number of disjoint 2-cycles, then $\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1} \in N$ since N is a normal subgroup (by Theorem 14.13). So

$$
\begin{gathered}
\sigma^{-1}\left(\left(a_{1}, a_{2}, a_{3}\right) \sigma\left(a_{1}, a_{2}, a_{3}\right)^{-1}\right) \\
=\left(a_{1}, a_{2}\right)\left(a_{3}, a_{4}\right) \mu^{-1}\left(a_{1}, a_{2}, a_{3}\right) \mu\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}\right)\left(a_{3}, a_{2}, a_{1}\right) \\
=\left(a_{1}, a_{2}\right)\left(a_{3}, a_{4}\right)\left(a_{1}, a_{2}, a_{3}\right)\left(a_{3}, a_{4}\right)\left(a_{a}, a_{2}\right)\left(a_{3}, a_{2}, a_{1}\right) \\
\text { since } \mu \text { and } \mu^{-1} \text { are disjoint from the other cycles } \\
=\left(a_{1}, a_{3}\right)\left(a_{2}, a_{4}\right)=\alpha \in N .
\end{gathered}
$$

Let $\beta=\left(a_{1}, a_{3}, i\right)=\left(a_{1}, i\right)\left(a_{3}, a_{1}\right) \in A_{n}$ for some i different from $a_{1}, a_{2}, a_{3}, a_{4}$ (so we need $n \geq 5$ here). Since N is a normal subgroup and $\alpha \in N$ then $\beta^{-1} \alpha \beta \in N$ by Theorem 14.13. So

$$
\left(\beta^{-1} \alpha \beta\right) \alpha=\left(i, a_{3}, a_{1}\right)\left(a_{1}, a_{3}\right)\left(a_{2}, a_{4}\right)\left(a_{1}, a_{3}, i\right)\left(a_{1}, a_{3}\right)\left(a_{2}, a_{4}\right)=\left(a_{1}, a_{3}, i\right) \in N .
$$

So N contains a 3 -cycle and by Case I, $N=A_{n}$ and A_{n} is simple (this case holds for $n \geq 5$).

Note. Alternating groups A_{n} are of order $n!/ 2$ and are only defined for $n \geq 2$. When $n=2, A_{2}=\{e\}$ is the trivial group and so is not simple. When $n=3$, $\left|A_{3}\right|=3!/ 2=2$ and there is only one group (up to isomorphism) of order 3, so $A_{3} \cong \mathbb{Z}_{3}$ and A_{3} is also simple. For $n=4$, Case V might apply, but Case V requires $n \geq 5$ in the proof that A_{n} is simple. In fact, A_{4} has a proper nontrivial normal subgroup of order 4 (namely, $\left.N=\{\iota,(1,3)(2,4),(1,4)(2,3),(1,2)(3,4)\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

Note. A multiplication table for A_{4} is given below. We follow the notation of Schaum's Outline of Theory and Problems of Group Theory by Benjamin Baumslag and Bruce Chandler, NY: McGrawHill (1968). The table is broken up in a way as to reveal the cosets. The normal subgroup is $\left.N=\{\iota,(1,3)(2,4),(1,4)(2,3),(1,2)(3,4)\}=\left\{\iota, \sigma_{2}, \sigma_{5}, \sigma_{8}\right\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$. You can tell by the structure of the table that $A_{4} / N \cong \mathbb{Z}_{3}$.

$$
\begin{aligned}
& \iota=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right) \sigma_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right) \sigma_{5}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) \sigma_{8}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \\
& \tau_{1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right) \tau_{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right) \tau_{3}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{array}\right) \tau_{4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 2 & 1 & 3
\end{array}\right) \\
& \tau_{5}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right) \tau_{6}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right) \tau_{7}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right) \tau_{8}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right)
\end{aligned}
$$

ι	ι	σ_{2}	σ_{5}	σ_{8}	τ_{1}	τ_{4}	τ_{5}	τ_{8}	τ_{2}	τ_{3}	τ_{6}	τ_{7}
σ_{2}	σ_{2}	ι	σ_{8}	σ_{5}	τ_{4}	τ_{1}	τ_{8}	τ_{5}	τ_{7}	τ_{6}	τ_{3}	τ_{2}
σ_{5}	σ_{5}	σ_{8}	ι	σ_{2}	τ_{5}	τ_{8}	τ_{1}	τ_{4}	τ_{3}	τ_{2}	τ_{7}	τ_{6}
σ_{8}	σ_{8}	σ_{5}	σ_{2}	ι	τ_{8}	τ_{5}	τ_{4}	τ_{1}	τ_{6}	τ_{7}	τ_{2}	τ_{3}
τ_{1}	τ_{1}	τ_{8}	τ_{4}	τ_{5}	τ_{2}	τ_{6}	τ_{7}	τ_{3}	ι	σ_{2}	σ_{5}	σ_{8}
τ_{4}	τ_{4}	τ_{5}	τ_{1}	τ_{8}	τ_{7}	τ_{3}	τ_{2}	τ_{6}	σ_{2}	ι	σ_{8}	σ_{5}
τ_{5}	τ_{5}	τ_{4}	τ_{8}	τ_{1}	τ_{3}	τ_{7}	τ_{6}	τ_{2}	σ_{5}	σ_{8}	ι	σ_{2}
τ_{8}	τ_{8}	τ_{1}	τ_{5}	τ_{4}	τ_{6}	τ_{2}	τ_{3}	τ_{7}	σ_{8}	σ_{5}	σ_{2}	ι
τ_{2}	τ_{2}	τ_{3}	τ_{6}	τ_{7}	ι	σ_{5}	σ_{8}	σ_{2}	τ_{1}	τ_{8}	τ_{4}	τ_{5}
τ_{3}	τ_{3}	τ_{2}	τ_{7}	τ_{6}	σ_{5}	ι	σ_{2}	σ_{8}	τ_{5}	τ_{4}	τ_{8}	τ_{1}
τ_{6}	τ_{6}	τ_{7}	τ_{2}	τ_{3}	σ_{8}	σ_{2}	ι	σ_{5}	τ_{8}	τ_{1}	τ_{5}	τ_{4}
τ_{7}	τ_{7}	τ_{6}	τ_{3}	τ_{2}	σ_{2}	σ_{8}	σ_{5}	ι	τ_{4}	τ_{5}	τ_{1}	τ_{8}

Revised: 1/10/2013

