Supplement. The Alternating Groups A_n
are Simple for $n \geq 5$

Note. Recall that a group is *simple* if it is nontrivial and has no proper nontrivial normal subgroups. In this supplement, we follow the hints of Fraleigh in Exercise 15.39 and prove that A_n is simple for $n \geq 5$.

Theorem 15.15. The alternating group A_n is simple for $n \geq 5$.

Proof. (Exercise 15.39.)

(a) For $n \geq 3$, A_n contains every 3-cycle.

Proof. Recall that A_n contains all even permutations (those permutations that are a product of an even number of transpositions). Since the 3-cycle $(a, b, c) = (a, c)(a, b)$ (remember to read from right to left), then every 3-cycle is an even permutation and hence is in A_n. □

(b) For $n \geq 3$, A_n is generated by the 3-cycles.

Proof. Let $\sigma \in A_n$. Then σ is a product of an even number of permutations, say

$$\sigma = (a_1, b_1)(c_1, d_1)(a_2, b_2)(c_2, d_2) \cdots (a_k, b_k)(c_k, d_k)$$

where these a_i, b_i, c_i, d_i for $i = 1, 2, \ldots, k$ may not be distinct. Now we consider the pairs of transpositions in terms of repeated elements. (1) If for some j, a_j, b_j, c_j, d_j are distinct, then $(a_j, b_j)(c_j d_j) = (a_j, c_j, b_j)(a_j, c_j, d_j)$. (2) If for some j, a_j, b_j, d_j are distinct, but $a_j = c_j$, then

$$(a_j, b_j)(c_j, d_j) = (a_j, b_j)(a_j, d_j) = (a_j, b_j, c_j).$$
(3) If for some \(j \), \(a_j = c_j \) and \(b_j = d_j \) then

\[
(a_j, b_j)(c_j, d_j) = (a_j, b_j)(a_j, b_j) = \iota,
\]

the identity permutation, and this pair of transpositions can be eliminated from the representation of \(\sigma \) in terms of the \(k \) pairs of transpositions.

These three types of pairs of transpositions are the only types possible (remember, \(a_j \neq b_j, c_j \neq d_j \), and the order in a transposition is irrelevant). So each pair of transpositions in the representation of \(\sigma \) given above can be (1) replaced with a product of two 3-cycles, (2) replaced with a single 3-cycle, or (3) omitted from the product (respectively). Therefore, \(\sigma \) can be written as a product of 3-cycles and the 3-cycles generate \(A_n \). \(\square \)

(c) Let \(r \) and \(s \) be distinct fixed elements of \(\{1, 2, \ldots, n\} \) for \(n \geq 3 \). Then \(A_n \) is generated by the \(n \) “special” 3-cycles of the form \((r, s, i) \) for \(1 \leq i \leq n, i \neq r, i \neq s \).

Proof. Let \(r \) and \(s \) be given. Then a 3-cycle in the generating set of \(A_n \) as given in (b) may (1) contain neither \(r \) nor \(s \) and be of the form \((a, b, c) \), (2) contain \(r \) only and be of the form \((r, a, b) \), (3) contain \(s \) only and be of the form \((s, a, b) \), or (4) contain both \(r \) and \(s \) and be of the form \((r, s, a) \) or be of the form \((s, r, a) \).

Following the hint:

\[
(r, s, a)^2(r, s, c)(r, s, b)^2(r, s, a) = (a, b, c)
\]

\[
(r, s, b)(r, s, a)^2 = (r, a, b)
\]

\[
(r, s, b)^2(r, s, a) = (s, a, b)
\]

\[
(r, s, a) = (r, s, a)
\]

\[
(r, s, a)^2 = (s, r, a).
\]
So every possible 3-cycle in A_n can be written as a product of 3-cycles of the form (r, s, i) where r and s are given and $1 \leq i \leq n$. □

(d) Let N be a normal subgroup of A_n for $n \geq 3$. If N contains a 3-cycle, then $N = A_n$.

Proof. Let (r, s, a) be the 3-cycle in N and let $b \in \{1, 2, \ldots, n\}$ where $b \neq r$ and $b \neq s$. Then $(a, b)(r, s) \in A_n$ since this is an even permutation. Also,

$$((a, b)(r, s))^{-1} = (r, s)^{-1}(a, b)^{-1} = (r, s)(a, b) \in A_n$$

since A_n is a group. Since N is a normal subgroup, then by Theorem 14.13,

$$((a, b)(r, s))(r, s, a)((r, s)(a, b))^{-1} = (a, b)(r, s)(r, s, a)(r, s)(a, b) = (r, s, b) \in N.$$

Since b is an arbitrary element of $\{1, 2, \ldots, n\}$ (other than the restriction $b \neq r$, $b \neq s$), then N contains all of the “special” 3-cycles of part (c). Therefore, by part (c), $N = A_n$. □

(e) Let N be a nontrivial normal subgroup of A_n for $n \geq 5$. Then one of the following cases must hold. In each case, $N = A_n$.

Case I. N contains a 3-cycle.

Case II. N contains a product of disjoint cycles, at least one of which has length greater than 3.

Case III. N contains a disjoint product of the form $\sigma = \mu(a_4, a_5, a_6)(a_1, a_2, a_3)$ (where $\mu \in A_n$).

Case IV. N contains a disjoint product of the form $\sigma = \mu(a_1, a_2, a_3)$ where μ is a product of an even number of disjoint 2-cycles.

Case V. N contains a disjoint product σ of the form $\sigma = \mu(a_3, a_4)(a_1, a_2)$ where μ is a product of an even number of disjoint 2-cycles.
Proof. To see why at least one of Case I–V must hold, we consider writing the elements of N as *disjoint* products of cycles (which can be done by Theorem 9.8). Case II describes the situation in which there is a permutation which is the product of disjoint cycles, at least one of which has length greater than 3. So if Case II does not hold, then all elements of N can be written as a disjoint product of cycles of lengths 2 and 3 (we omit cycles of length 1—i.e., fixed points). Case V covers the case where N contains a permutation consisting of no 3-cycles and a bunch of 2-cycles (i.e., transpositions). Case I covers the case where N contains a permutation consisting of a single 3-cycle alone. Case IV covers the case where N contains a permutation consisting of a single 3-cycle and a bunch of 2-cycles. Case III covers the case where N contains a permutation consisting of two or more 3-cycles. Therefore, in terms of decompositions of permutations into disjoint cycles and with an eye towards 3-cycles, if Case II does not hold, then at least one of Case I, III, IV, or V must hold.

Now we explore Cases I–V to show that each implies that $N = A_n$ and therefore that A_n has no proper nontrivial normal subgroup for $n \geq 5$ (that is, A_n is simple for $n \geq 5$).

Case I. If N contains a 3-cycle, then by part (d), $N = A_n$ and A_n is simple (in fact, this holds for $n \geq 3$).

Case II. If N contains a permutation of the form $\sigma = \mu(a_1, a_2, \ldots, a_r)$ where $r > 3$ and μ contains none of a_1, a_2, \ldots, a_r, then $(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} \in N$ since N is a normal subgroup (by Theorem 14.13). So

$$\sigma^{-1} \left((a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} \right) = (a_r, \ldots, a_2, a_1)\mu^{-1}(a_1, a_2, a_3)\mu(a_1, a_2, \ldots, a_r)(a_3, a_2, a_1)$$
\[A_n \text{ is Simple for } n \geq 5 \]

Supplement

\[\mu^{-1}(a_r, \ldots, a_2, a_1)(a_1, a_2, a_3)(a_1, a_2, \ldots, a_r)(a_3, a_2, a_1) \]

since \(\mu \) and \(\mu^{-1} \) are disjoint from the other cycles

\[= (a_r, \ldots, a_2, a_1)(a_1, a_2, a_3)(a_1, a_2, \ldots, a_r)(a_3, a_2, a_1) = (a_1, a_3, a_r) \in N. \]

So \(A_n \) contains a 3-cycle and by part (d) \(N = A_n \) and \(A_n \) is simple (in fact, this holds for \(n \geq 4 \)).

Case III. If \(N \) contains a permutation of the form \(\sigma = \mu(a_4, a_5, a_6)(a_1, a_2, a_3) \) where \(\mu \) contains none of \(a_1, a_2, a_3, a_4, a_5, a_6 \), then \((a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1} \in N \) since \(N \) is a normal subgroup (by Theorem 14.13). So

\[\sigma^{-1}((a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1}) \]

\[= (a_3, a_2, a_1)(a_6, a_5, a_4)\mu^{-1}(a_1, a_2, a_4)\mu(a_4, a_5, a_6)(a_1, a_2, a_3)(a_4, a_2, a_1) \]

\[= (a_3, a_2, a_1)(a_6, a_5, a_4)(a_1, a_2, a_4)(a_4, a_5, a_6)(a_1, a_2, a_3)(a_4, a_2, a_1) \]

since \(\mu \) and \(\mu^{-1} \) are disjoint from the other cycles

\[= (a_1, a_4, a_2, a_6, a_3) \in N. \]

So \(N \) contains a cycle of length greater than 3 and by Case II, \(N = A_n \) and \(A_n \) is simple (notice this case requires \(n \geq 6 \)).

Case IV. If \(N \) contains a permutation of the form \(\sigma = \mu(a_1, a_2, a_3) \) where \(\mu \) contains none of \(a_1, a_2, a_3 \), and is a product of disjoint 2-cycles, then

\[\sigma^2 = \mu(a_1, a_2, a_3)\mu(a_1, a_2, a_3) \]

\[= \mu^2(a_1, a_2, a_3)(a_1, a_2, a_3) \text{ since } \mu \text{ is disjoint from the 3-cycles} \]

\[= (a_1, a_2, a_3)(a_1, a_2, a_3) \text{ since } \mu^2 = \iota \text{ because } \mu \text{ is a product of disjoint 2-cycles} \]

\[= (a_1, a_3, a_2) \in N. \]
Case V. If N contains a permutation of the form $\sigma = \mu(a_3, a_4)(a_1, a_2)$ where μ contains none of a_1, a_2, a_3, a_4 and μ is a product of an even number of disjoint 2-cycles, then $(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} \in N$ since N is a normal subgroup (by Theorem 14.13). So

$$\sigma^{-1}((a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1})$$

$$= (a_1, a_2)(a_3, a_4)\mu^{-1}(a_1, a_2, a_3)\mu(a_3, a_4)(a_1, a_2)(a_3, a_2, a_1)$$

$$= (a_1, a_2)(a_3, a_4)(a_1, a_2, a_3)(a_3, a_4)(a_a, a_2)(a_3, a_2, a_1)$$

since μ and μ^{-1} are disjoint from the other cycles

$$= (a_1, a_3)(a_2, a_4) = \alpha \in N.$$

Let $\beta = (a_1, a_3, i) = (a_1, i)(a_3, a_1) \in A_n$ for some i different from a_1, a_2, a_3, a_4 (so we need $n \geq 5$ here). Since N is a normal subgroup and $\alpha \in N$ then $\beta^{-1}\alpha\beta \in N$ by Theorem 14.13. So

$$(\beta^{-1}\alpha\beta)\alpha = (i, a_3, a_1)(a_1, a_3)(a_2, a_4)(a_1, a_3, i)(a_1, a_3)(a_2, a_4) = (a_1, a_3, i) \in N.$$

So N contains a 3-cycle and by Case I, $N = A_n$ and A_n is simple (this case holds for $n \geq 5$).

\[\blacksquare\]

Note. Alternating groups A_n are of order $n!/2$ and are only defined for $n \geq 2$. When $n = 2$, $A_2 = \{e\}$ is the trivial group and so is not simple. When $n = 3$, $|A_3| = 3!/2 = 2$ and there is only one group (up to isomorphism) of order 3, so $A_3 \cong \mathbb{Z}_3$ and A_3 is also simple. For $n = 4$, Case V might apply, but Case V requires $n \geq 5$ in the proof that A_n is simple. In fact, A_4 has a proper nontrivial normal subgroup of order 4 (namely, $N = \{1, (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(3, 4)\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$).
Note. A multiplication table for A_4 is given below. We follow the notation of *Schaum’s Outline of Theory and Problems of Group Theory* by Benjamin Baumslag and Bruce Chandler, NY: McGraw-Hill (1968). The table is broken up in a way as to reveal the cosets. The normal subgroup is $N = \{\iota, (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(3, 4)\} = \{\iota, \sigma_2, \sigma_5, \sigma_8\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. You can tell by the structure of the table that $A_4/N \cong \mathbb{Z}_3$.

$$
\begin{align*}
\iota &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} & \sigma_2 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} & \sigma_5 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} & \sigma_8 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \\
\tau_1 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix} & \tau_2 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix} & \tau_3 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} & \tau_4 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix} \\
\tau_5 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} & \tau_6 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} & \tau_7 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} & \tau_8 &= \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}
\end{align*}
$$

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
 & \iota & \sigma_2 & \sigma_5 & \sigma_8 & \tau_1 & \tau_4 & \tau_5 & \tau_8 \\
\hline
\iota & \iota & \sigma_2 & \sigma_5 & \sigma_8 & \tau_1 & \tau_4 & \tau_5 & \tau_8 \\
\sigma_2 & \sigma_2 & \iota & \sigma_8 & \sigma_5 & \tau_1 & \tau_4 & \tau_5 & \tau_8 \\
\sigma_5 & \sigma_5 & \sigma_8 & \iota & \sigma_2 & \tau_1 & \tau_4 & \tau_5 & \tau_8 \\
\sigma_8 & \sigma_8 & \sigma_5 & \sigma_2 & \iota & \tau_1 & \tau_4 & \tau_5 & \tau_8 \\
\tau_1 & \tau_1 & \tau_8 & \tau_4 & \tau_5 & \tau_2 & \tau_6 & \tau_7 & \tau_3 \\
\tau_4 & \tau_4 & \tau_5 & \tau_1 & \tau_8 & \tau_2 & \tau_6 & \tau_7 & \tau_3 \\
\tau_5 & \tau_5 & \tau_4 & \tau_8 & \tau_1 & \tau_3 & \tau_7 & \tau_6 & \tau_2 \\
\tau_8 & \tau_8 & \tau_1 & \tau_5 & \tau_4 & \tau_6 & \tau_2 & \tau_3 & \tau_7 \\
\tau_2 & \tau_2 & \tau_3 & \tau_6 & \tau_7 & \iota & \sigma_5 & \sigma_8 & \sigma_2 \\
\tau_3 & \tau_3 & \tau_2 & \tau_7 & \tau_6 & \sigma_5 & \iota & \sigma_2 & \sigma_8 \\
\tau_6 & \tau_6 & \tau_7 & \tau_2 & \tau_3 & \sigma_8 & \sigma_2 & \iota & \sigma_5 \\
\tau_7 & \tau_7 & \tau_6 & \tau_3 & \tau_2 & \sigma_2 & \sigma_8 & \sigma_5 & \iota \\
\hline
\end{array}
$$

Revised: 1/10/2013