Supplement. Dr. Bob's Modern Algebra Glossary

Based on Fraleigh's A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV. 23

Abstract

Abelian Group. A group $\langle G, *\rangle$ (or just " G " for short) is abelian if its binary operation is commutative.

Abstract

Alternating Group. The subgroup of S_{n} consisting of the even permutations of n letters is the alternating group A_{n} on n letters.

Associative. A binary operation $*$ on a set S is associative if $(a * b) * c=a *(b * c)$ for all $a, b, c \in S$.
Automorphism of a Group. An isomorphism $\phi: G \rightarrow G$ of a group with itself is an automorphism of G.

Binary Algebraic Structure. A binary algebraic structure is an ordered pair $\langle S, *\rangle$ where S is a set and $*$ is a binary operation on S.

Binary Operation. A binary operation $*$ on a set S is a function mapping $S \times S$ into S. For each (ordered pair) $(a, b) \in S \times S$, we denote the element $*((a, b)) \in S$ as $a * b$.

Cartesian Product. Let A and B be sets. The set $A \times B=\{(a, b) \mid a \in A, b \in B\}$ is the Cartesian product of A and B. The Cartesian product of sets $S_{1}, S_{2}, \ldots, S_{n}$ of the set of all ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i} \in S_{i}$ for $i=1,2, \ldots, n$. This is denoted

$$
\prod_{i=1}^{n} S_{i}=S_{1} \times S_{2} \times \cdots \times S_{n}
$$

Cayley Digraph/Graph. For a group G with generating set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, define a digraph with vertex set V with the same elements as the elements of G. For each pair of vertices v_{1} and v_{2} define an $\operatorname{arc}\left(v_{1}, v_{2}\right)$ of color a_{i} if $v_{1} a_{i}=v_{2}$. The totality of all arcs form the arc set A of the digraph. The vertex set V and arc set A together form a Cayley digraph for group G with respect to generating set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Center of a Group. For group G, define the center of G as

$$
Z(G)=\{z \in g \mid z g=g z \text { for all } g \in G\}
$$

Characteristic of a Ring. If for a ring R there is $n \in \mathbb{N}$ such that $n \cdot a=0$ for all $a \in R$ (remember that " $n \cdot a$ " represents repeated addition), then the least such natural number is the characteristic of the ring R. If no such n exists, then ring R is of characteristic 0 .

Closed. Let $*$ be a binary operation on set S and let $H \in S$. Then H is closed under $*$ if for all $a, b \in H$, we also have $a * b \in H$.

Commutator Subgroup. For group G, consider the set

$$
C=\left\{a b a^{-1} b^{-1} \mid a, b \in G\right\} .
$$

C is the commutator subgroup of G.
Commutative Binary Operation. A binary operation $*$ on a set S is commutative if $a * b=b * a$ for all $a, b \in S$.

Commutative Ring. A ring in which multiplication is commutative (i.e., $a b=b a$ for all $a, b \in R$) is a commutative ring.
Complex Numbers. The complex numbers are $\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}, i \sqrt{-1}\}$.
Cosets. Let H be a subgroup of a group G. The subset $a H=\{a h \mid h \in H\}$ of G is the left coset of H containing a. The subset $H a=\{h a \mid h \in H\}$ is the right coset of H containing a.
Cycle. A permutation $\sigma \in S_{n}$ is a cycle if it has at most one orbit containing more than one element. The length of the cycle is the number of elements in its largest orbit.

Cyclic Notation. Let $\sigma \in S_{n}$ be a cycle of length m where $1<m \leq n$. Then the cyclic notation for σ is

$$
\left(a, \sigma(a), \sigma^{2}(a), \ldots \sigma^{m-1}(a)\right)
$$

where a is any element in the orbit of length m which results when $\{1,2, \ldots, n\}$ is partitioned into orbits by σ.

Cyclic Subgroup Generated by an Element. Let G be a group and let $a \in G$. Then the subgroup $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ of G (of Theorem 5.17) is the cyclic subgroup of G generated by a, denoted $\langle a\rangle$.
Cyclotomic Polynomial. The polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-1}+\cdots+x^{2}+x+1
$$

for prime p is the pth cyclotomic polynomial.
Decomposable Group. A group G is decomposable if it is isomorphic to a direct product of two proper nontrivial subgroups. Otherwise G is indecomposable.

Dihedral Group. The nth dihedral group D_{n} is the group of symmetries of a regular n-gon. In fact, $\left|D_{n}\right|=2 n$.
Division Ring. Let R be a ring with unity $1 \neq 0$. An element $u \in R$ is a unit of R if it has a multiplicative inverse in R. If every nonzero element of R is a unit, then R is a division ring (or skew field).
Divisors of Zero. If a and b are two nonzero elements of a ring R such that $a b=0$ then a and b are divisors of 0 .

Equivalence Relation. An equivalence relation \mathcal{R} on a set S is a relation on S such that for all $x, y, z \in S$, we have
(1) \mathcal{R} is reflexive: $x \mathcal{R} x$,
(2) \mathcal{R} is symmetric: If $x \mathcal{R} y$ then $y \mathcal{R} x$, and
(3) \mathcal{R} is transitive: If $x \mathcal{R} y$ and $y \mathcal{R} z$, then $x \mathcal{R} x$.

Euler Phi-Function. For $n \in \mathbb{N}$, define $\phi(n)$ as the number of natural numbers less than or equal to n which are relatively prime to n. ϕ is the Euler phi-function.

Even and Odd Permutations. A permutation of a finite set is even or odd according to whether it can be expressed as a product of an even number of transpositions or the product of an odd number of transpositions.

Factor Group (Quotient Group). Let H be a normal subgroup of G. Then the cosets of H form a group G / H under the binary operation $(a H) \cdot(b H)=(a b) H$ called the the factor group (or quotient group) of G by H.

Field. A field is a commutative division ring.

Function. A function ϕ mapping set X into set Y is a relation between X and Y such that each $x \in X$ appears as the first member of exactly one ordered pair $(x, y) \in \phi$. We write $\phi: X \rightarrow Y$ and for $(x, y) \in \phi$ we write $\phi(x)=y$. The domain of ϕ is the set X and the codomain of ϕ is Y. The range of ϕ is the set $\phi[X]=\{\phi(x) \mid x \in X\}$.

Generator of a Group. An element a of a group G generates G if $\langle a\rangle=G$. A group is cyclic if there is $a \in G$ such that $\langle a\rangle=G$.

Generating Set of a Group. Let G be a group and let $a_{i} \in G$ for $i \in I$. The smallest of G containing $\left\{a_{i} \mid i \in I\right\}$ is the subgroup generated by the set $\left\{a_{i} \mid i \in I\right\}$. This subgroup is defined as the intersection of all subgroups of G containing $\left\{a_{i} \mid i \in I\right\}: H=\cap_{i \in J} H_{j}$ where the set of all subgroups of G containing $\left\{a_{i} \mid i \in I\right\}$ is $\left\{H_{j} \mid j \in J\right\}$. If this subgroup is all of G, then the set $\left\{a_{i} \in i \in I\right\}$ generates G and the a_{i} are generators of G. If there is a finite set $\left\{a_{i} \mid i \in I\right\}$ that generates G, then G is finitely generated.

Greatest Common Divisor. Let $r, s \in \mathbb{N}$. The positive generator d of the cyclic group $H=$ $\{n r+m s \mid n, m \in \mathbb{Z}\}$ under addition is the greatest common divisor of r and s, denoted $\operatorname{gcd}(r, s)$.

Group. A group $\langle G, *\rangle$ is a set G and a binary operation on G such that G is closed under $*$ and \mathcal{G}_{1} For all $a, b, c \in G, *$ is associative:

$$
(a * b) * c=a *(b * c)
$$

\mathcal{G}_{2} There is $e \in G$ called the identity such that for all $x \in G$:

$$
e * x=x * e=x .
$$

\mathcal{G}_{3} For all $a \in G$, there is an inverse $a^{\prime} \in G$ such that:

$$
a * a^{\prime}=a^{\prime} * a=e .
$$

Homomorphism of Groups. A map ϕ of a group G into a group G^{\prime} is a homomorphism if for all $a, b \in G$ we have $\phi(a b)=\phi(a) \phi(b)$.

Homomorphism of Rings. For rings R and R^{\prime}, a map $\phi: R \rightarrow R^{\prime}$ is a homomorphism if for all $a, b \in R$ we have:

1. $\phi(a+b)=\phi(a)+\phi(b)$, and
2. $\phi(a b)=\phi(a) \phi(b)$.

Identity Element. Let $\langle S, *\rangle$ be a binary structure. An element e of S is an identity element of $*$ if $e * s=s * e=e$ for all $s \in S$.
Image. Let $f: A \rightarrow B$ for sets A and B. Let $H \subset A$. The image of set H under f is $\{f(h) \mid h \in H\}$, denoted $f[H]$. The inverse image of B in A is $f^{-1}[B]=\{a \in A \mid f(a) \in B\}$.

Index of a Subgroup. Let H be a subgroup of group G. The number of left cosets of H in G (technically, the cardinality of the set of left cosets) is the index of H in G, denoted $(G: H)$.

Integers. The integers are $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.
Integral Domain. An integral domain D is a commutative ring with unity $1 \neq 0$ and containing no divisors of 0 .

Isomorphism of Binary Algebraic Structures. Let $\langle S, *\rangle$ and $\left\langle S^{\prime}, *^{\prime}\right\rangle$ be binary algebraic structures. An isomorphism of S with S^{\prime} is a one-to-one function ϕ mapping S onto S^{\prime} such that

$$
\phi(x * y)=\phi(x) *^{\prime} \phi(y) \text { for all } x, y \in S
$$

We then say S and S^{\prime} are isomorphic binary structures, denoted $S \simeq S^{\prime}$.
Isomorphism of Rings. A isomorphism $\phi: R \rightarrow R^{\prime}$ from ring R to ring R^{\prime} is a homomorphism which is one to one and onto R^{\prime}.

Kernel of a Homomorphism. Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. The subgroup $\phi^{-1}\left(\left\{e^{\prime}\right\}\right)=$ $\left\{x \in G \mid \phi(x)=e^{\prime}\right\}$ (where e^{\prime} is the identity in G) is the kernel of ϕ, denoted $\operatorname{Ker}(\phi)$.

Least Common Multiple. For $r_{1}, r_{2}, \ldots, r_{n} \in \mathbb{N}$, the smallest element of \mathbb{N} that is a multiple of each r_{i} for $i=1,2, \ldots, n$, is the least common multiple of the r_{i}, denoted $\operatorname{lcm}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.

Maximal Normal Subgroup. A maximal normal subgroup of a group G is a normal subgroup M not equal to G such that there is no proper normal subgroup N of G properly containing M.
Modulus. For $z=a+b i \in \mathbb{C}$, define the modulus or absolute value of z as $|z|=\sqrt{a^{2}+b^{2}}$.
Natural Numbers. The natural numbers are $\mathbb{N}=\{1,2,3, \ldots\}$.
Normal Subgroup. A subgroup H of a group G is normal if its left and right cosets coincide. That is if $g H=H g$ for all $g \in G$. Fraleigh simply says " H is a normal subgroup of G," but a common notation is $H \triangleleft G$.

Order of an Element. Let G be a group and $a \in G$. If G is cyclic and $G=\langle a\rangle$, then (1) if G is finite of order n, then element a is of order n, and (2) if G is infinite then element a is of infinite order.

Order of a Group. If G is a group, then the order $|G|$ of G is the number of elements in G.
One to One. A function $\phi: X \rightarrow Y$ is one to one (or an injection) if $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$ implies $x_{1}=x_{2}$.

One-to-One Correspondence. A function that is both one to one and onto is called a one-to-one correspondence (or a bijection) between the domain and codomain.
Onto. The function ϕ is onto Y (or a surjection) if the range of ϕ is Y.
Partition. A partition of a set S is a collection of nonempty subsets of S such that every element of S is in exactly one of the subsets.

Permutation. A permutation of a set A is a function $\phi: A \rightarrow A$ that is both one-to-one and onto.
Polynomial over a Ring. Let R be a ring. A polynomial $f(x)$ with coefficients in R is an infinite formal series

$$
\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

where $a_{i} \in R$ and $a_{i}=0$ for all but a finite number of values of i. The a_{i} are coefficients of $f(x)$. If for some $i \geq 0$ it is true that $a_{i} \neq 0$, then the largest such value of i is the degree of $f(x)$. If all $a_{i}=0$, then the degree of $f(x)$ is undefined. If $a_{i}=0$ for all $i \in \mathbb{N}$, then $f(x)$ is called a constant polynomial. We denote the set of all polynomials with coefficients in R as $R[x]$.
Rational Numbers. The rational numbers are $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$.
Real Numbers. The real numbers, denoted \mathbb{R}, form a complete ordered field.
Relation. A relation between sets A and B is a subset \mathcal{R} of $A \times B$. if $(a, b) \in \mathcal{R}$ we say a is related to b, denoted $a \mathcal{R} b$.

Ring. A ring $\langle R,+, \cdot\rangle$ is a set R together with two binary operations + and \cdot, called addition and multiplication, respectively, defined on R such that:
$\mathcal{R}_{1}:\langle R,+\rangle$ is an abelian group.
\mathcal{R}_{2} : Multiplication \cdot is associative: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in R$.
$\mathcal{R}_{3}:$ For all $a, b, c \in R$, the left distribution law $a \cdot(b+c)=(a \cdot c)+(b \cdot c)$ and the right distribution law $(a+b) \cdot c=(a \cdot c)+(b \cdot c)$ hold.

Ring with Unity. A ring with a multiplicative identity element is a ring with unity. The multiplicative unit is called unity.

Same Cardinality. Two sets X and Y have the same cardinality if there exists a one to one function mapping X onto Y (that is, if there is a one-to-one correspondence between X and Y).

Simple Group. A group is simple if it is nontrivial and has no proper nontrivial normal subgroups.
Strictly Skew Field. A noncommutative division ring is called a strictly skew field.
Structural Property. A structural property of a binary structure $\langle S, *\rangle$ is a property shared by any binary structure $\left\langle S^{\prime}, *^{\prime}\right\rangle$ which is isomorphic to $\langle S, *\rangle$.

Subgroup. If a subset H of a group G is closed under the binary operation of G and if H with the induced operation from G is itself a group, then H is a subgroup of G. We denote this as $H \leq G$ or $G \geq H$. If H is a subgroup of G and $H \neq G$, we write $H<G$ or $G>H$. If G is a group, then G itself is a subgroup of G called the improper subgroup of G; all other subgroups are proper subgroups. The subgroup $\{e\}$ is the trivial subgroup; all other subgroups are nontrivial subgroups.

Symmetry Group. Let A be the finite set $\{1,2, \ldots, n\}$. The group of all permutations of A is the symmetric group on n letters, denoted S_{n}.

Transposition. A cycle of length 2 is a transposition.
Whole Numbers. The whole numbers are $\mathbb{W}=\{0,1,2,3, \ldots\}$.
Zero of a Polynomial. Let F be a subfield of a field E, and let $\alpha \in E$. Let $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\cdots+a_{n} x^{n} \in F[x]$ and let $\phi_{\alpha}: F[x] \rightarrow E$ be the evaluation homomorphism (see Theorem 22.4). We denote

$$
\phi_{\alpha}(f(x))=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n} \alpha^{n}
$$

as $f(\alpha)$. If $f(\alpha)=0$, then α is a zero of $f(x)$.

