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Section 0. Sets and Relations

NOTE. Mathematics is the study of ideas, not of numbers!!! The idea

from modern algebra which is the focus of most of this class is that of a group

(this class could easily be called group theory). We will often use numbers to give

examples of groups, but the topics covered by modern algebra are the abstract

ideas of groups, rings, and fields.

Note. As commented in the text on page 1, it is impossible to define all objects

in mathematics. This is because we can only define new objects in terms of old

objects—at some point we must have foundational objects which are known to us

through intuition. One such object is a set of elements.

Note/Definition. A set is a collection of objects called elements. The elements

of a set appear in no particular order. Also, an object is either in a set or not—it

does not appear in a set a repeated number of times, for example. Therefore, we

would write the set with elements 5, 3, 2+3, 2, and 5−2 as any one of the following:

{5, 3, 2}, {5, 2, 3}, {3, 5, 2}, {3, 2, 5}, {2, 5, 3}, or {2, 3, 5}.

Notation. If a is an element of set S then we write “a ∈ S.” If S is the set with

no elements, we write S = ∅, the empty set or null set.
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Definition 0.1. A set B is a subset of set A, denoted B ⊆ A or A ⊇ B, if every

element b ∈ B is also an element of A. If B is a subset of A and A 6= B (that is, A

and B are different sets), then we write B ⊂ A (or B ( A) or A ⊃ B (or A ) B).

Note. Vacuously, for any set B, ∅ ⊆ B

Note. We can show two sets A and B are equal, A = B, by showing (1) A ⊆ B

and (2) B ⊆ A.

Definition 0.2. If A is any set, then A itself is the improper subset of set A. All

other subset of A are proper subsets. The set ∅ is the trivial subset of A.

Note. In axiomatic set theory, we need to have a universal set. All sets we discuss

are then subsets of this known universal set. Subsets of the universal set can then

be defined using a “characterizing property.” For example, we can let the universal

set be the set of natural numbers N = {1, 2, 3, . . .} and define set A as

S = {x ∈ N | x2 ≤ 100} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
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Notation. Several sets of numbers which we are interested in include:

1. The Natural Numbers N = {1, 2, 3, . . .},

2. The Whole Numbers W = {0, 1, 2, 3, . . .},

3. The Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} (the letter Z is used for the

German zahlen for “number”),

4. The Rational Numbers Q = {p/q | p, q ∈ Z, q 6= 0},

5. The Real Numbers R, and

6. The Complex Numbers C = {a + ib | a, b ∈ R, i =
√
−1}.

Note. Some subsets of the above sets of real numbers are important. In particular,

we have:

• The positive integers, rationals, and reals, denoted Z+, Q+, and R+, respectively.

• The nonzero integers, nonzero rationals, nonzero reals, and nonzero complex

numbers, denoted Z∗, Q∗, R∗, and C∗, respectively.

Notice. We have Z∗ ⊂ Q∗ ⊂ R∗ ⊂ C∗ and Z ⊂ Q ⊂ R ⊂ C

Definition 0.4. Let A and B be sets. The set A × B = {(a, b) | a ∈ A, b ∈ B} is

the Cartesian Product of A and B.
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Example. If A = {1, 2, 3} and B = {a, b} then

A × B = {(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)}.

Definition 0.7. A relation between sets A and B is a subset R of A × B. If

(a, b) ∈ R we say a is related to b, denoted aR b.

Example. Let A = {1, 2, 3} and B = {a, b}. Suppose R = {(1, a), (2, a), (3, b)}.
Then we have 1R a, 2R a, and 3R b.

Definition 0.10. A function φ mapping set X into set Y is a relation between X

and Y such that each x ∈ X appears as the first member of exactly one ordered

pair (x, y) ∈ φ. We may also call a function a map or mapping of X into Y . We

write φ : X → Y and for (x, y) ∈ φ we write φ(x) = y. The domain of φ is the set

X and the codomain of φ is Y . The range of φ is the set φ[X ] = {φ(x) | x ∈ X}.

Note. We use square brackets when applying a function to a set. The idea of a

codomain is to tell the type of object which φ gives out. For example, if we treat

multiplication of a column vector of dimension n be an m × n matrix, then we

get an m dimensional vector. So the codomain is Rm (though the range may be a

proper subset of Rm).
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Definition 0.12. A function φ : X → Y is one to one (or an injection) if φ(x1) =

φ(x2) implies x1 = x2. The function φ is onto Y (or a surjection) if the range

of φ is Y . A function that is both one to one and onto is called a one-to-one

correspondence (or a bijection) between the domain and codomain.

Exercise 0.12. Let A = {1, 2, 3} and B = {2, 4, 6} Which of these are functions?

If a function, which is one to one and which is onto B?

(a) {(1, 4), (2, 4), (3, 6)} — A function.

(b) {(1, 6), (1, 2), (1, 4)} — Not a function.

(c) {(2, 2), (1, 6), (3, 4)} — A function, one to one and onto B.

Definition 0.13. Two sets X and Y have the same cardinality if there exists a one

to one function mapping X onto Y (that is, if there is a one-to-one correspondence

between X and Y ).

Note. The idea of the cardinality of a set is that the cardinality (or more pre-

cisely, the “cardinal number”) represents the size of the set. If the set is finite we

can simply define the cardinality as the number of elements in the set. However,

surprisingly there are different levels of infinity! The smallest level of infinity is the

cardinality of N and is denoted ℵ0 (“aleph nought”). We denote the cardinality of

set A as |A| and we have

ℵ0 = |N| = |Z| = |Q| 6= |R| = |C|.

A set of cardinality ℵ0 is called countable. So R is not countable and the real
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numbers form an infinite set that is larger than the infinite set N. The details of

these ideas are due to Georg Cantor in the late 19th century. These topics are

studied in Analysis 1 (MATH 4217/5217).

Definition 0.16. A partition of a set S is a collection of nonempty subsets of S

such that every element of S is in exactly one of the subsets.

Note. Sets A and B are disjoint if A ∩ B = ∅. So the nonempty subsets of S

which partition S (called the cells of the partition) are disjoint.

Example. We can define a partition of Z as follows. Define A0 = {x ∈ Z |
3 divides x}, A1 = {x ∈ Z | 3 divides x + 2}, and A2 = {x ∈ Z | 3 divides x +

1}. Then A0, A1, and A2 are the cells of a partitioning of Z. We have A0 =

{. . . ,−6,−3, 0, 3, 6, . . .}, A1 = {. . . ,−5,−2, 1, 4, 7, . . .}, and A2 = {. . . ,−4,−1, 2, 5,

8, . . .}.

Definition 0.18. An equivalence relation R on a set S is a relation on S such that

for all x, y, z ∈ S, we have

(1) R is reflexive: xR x,

(2) R is symmetric: If xR y then y R x, and

(3) R is transitive: If xR y and yR z, then xR z.
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Example 0.20. Let n ∈ N Then for any z ∈ Z, there are unique integers q and r

such that z = nq + r and 0 ≤ r < n. This is the Division Algorithm for Z and is

explained in more detail in Section I.6 (see page 60). For such z and n, the number

r is the remainder which results when z is divided by n. For a given n ∈ N, there

are n possible remainders which result as z ranges over all values in Z (namely, the

remainders are 0, 1, 2, . . . , n − 1). All a ∈ Z which yield a given value of r make

up a residue class modulo n of Z. In the previous example, A0 is the residue class

modulo 3 associated with remainder 0 modulo 3, A1 is associated with reminder 1

modulo 3, and A2 is associated with remainder 2 modulo 3. If two elements a, b ∈ Z

occur in the same residue class modulo n, then we say a is congruent to b modulo

n, denoted a ∼= b (mod n). For example, all even integers are congruent modulo

2 and all odd integers are congruent modulo 2. In fact, congruence modulo n (for

given n) is an equivalence relation on Z. Addition modulo n leads to consideration

of the set of n equivalence classes on Z denoted Zn = {0, 1, 2, . . . , n − 1}.

Theorem 0.22. Equivalence Relations and Partitions.

Let S be a nonempty set and let ∼ be an equivalence relation on S. Then ∼
yields a partition of S into equivalence classes where for each a ∈ S we define

a = {x ∈ S | x ∼ a}. Also, each partition of S gives rise to an equivalence relation

∼ on S where a ∼ b if and only if a and b are in the same cell of the partition.

Note. The concept of using an equivalence relation to partition a set is a common

one. In particular, we will use it in the proof of Lagrange’s Theorem in Section

I.10.
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Note. You should recall the properties of logic and truth tables from your Math-

ematical Reasoning class (MATH 2800). Here, we use the symbol ∼ to mean

negation when placed over a symbol (so p̃ is “not p”):

p q p ∩ q p ∪ q p ⇒ q p̃ q̃ p̃ ∩ q̃ p̃ ∪ q̃ q̃ ⇒ p̃

T T T T T F F F F T

T F F T F F T F T F

F T F T T T F F T T

F F F F T T T T T T

Notice that (̃p ∩ q) = (p̃ ∪ q̃), (̃p ∪ q) = (p̃ ∪ q̃), and (p ⇒ q) = (q̃ ⇒ p̃). Here,

by equality, we mean that the same truth values for p and q yield the same truth

values on both sides of the equations.

Note. It is often useful to swap a statement for its contrapositive. For example,

a function φ is one to one if (φ(x1) = φ(x2)) ⇒ (x1 = x2). The contrapositive of

this definition is (x1 6= x2) ⇒ (φ(x1) 6= φ(x2)). So a function is one to one when

different input values for a function imply different output values. This is why we

can test the graph of y = f(x) in the Cartesian plane for one-to-one-ness with the

horizontal line test.
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