
I.1. Sets and Relations 1

Part I. Groups and Subgroups

Section I.1. Introduction and Examples

Note. In this section, we introduce the complex numbers and some important

subsets of the complex numbers which form examples of a main topic of modern

algebra: groups.

“Definition.” We define the complex numbers as C = {a + bi | a, b ∈ R} where i

had the algebraic property that i2 = −1. Addition and multiplication satisfies all

the familiar properties from R. For z = a + ib, we call a the real part of a and b

the imaginary part of z, denoted a = Re(z) and b = Im(z).

Note. Once the real numbers are axiomatically defined (as is done in Analysis 1)

then the complex numbers can be developed analytically using the definition above.

On the other hand, the complex numbers can be defined algebraically by extending

R algebraically by i, the topic of Part VI of our text. In fact, the Fundamental

Theorem of Algebra states that C is “algebraically closed.” This implies that an

n-degree polynomial equation cnz
n+cn−1z

n−1+· · ·+c2z
2+c1z+c0 = 0 (where ck ∈ C

for k = 0, 1, 2, . . . , n and the variable is z) has n solutions (counting multiplicity).

Note. For z = a + bi and z2 = c + di, we have

z1z2 = (a + bi)(c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc)i.
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Definition. For z = a + bi, define the modulus or absolute value of z as |z| =
√

a2 + b2.

Exercise 1.41. Recall the power series

ex = 1 + x +
x2
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+ · · · + xn
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+ · · · =
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n!
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.

Use these series to prove Euler’s Formula eiθ = cos θ + i sin θ. You may assume

that these three series converge absolutely for all complex numbers (and hence the

series can be rearranged without changing their values).

Solution. We have

eiθ =

∞
∑

n=0

(iθ)n

n!
=

∞
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n=0

n≡0(mod 4)
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∞
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+

∞
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∞
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since the series converges absolutely

=
∞
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∞
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+

∞
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∞
∑
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=
∞
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(2k)!
+ i

∞
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(−1)k+1 θ2k+1

(2k + 1)!
= cos θ + i sin θ.



I.1. Sets and Relations 3

Notice. If z = cos θ + i sin θ = eiθ, then |z| =
√

cos2 θ + sin2 θ = 1. We can then

represent complex numbers in polar form as z = |z|eiθ = |z|(cos θ + i sin θ):

θ is called an argument of z (notice that if θ is an argument of z then so is θ + 2kπ

for all k ∈ Z).

Note. If z1 = |z1|eiθ1 and z2 = |z2|eiθ2, then

z1z2 =
(

|z1|eiθ1

) (

|z2|eiθ2

)

= |z1|(cos θ1 + i sin θ1)|z2|(cos θ2 + i sin θ2)

= |z1||z2|(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= |z1||z2|(cos θ1 cos θ2 − sin θ1 sin θ2 + i cos θ1 sin θ2 + i sin θ1 cos θ2)

= |z1||z2| (cos(θ1 + θ2) + i sin(θ1 + θ2))

since cos(a + b) = cos a cos b − sin a sin b and sin(a + b) = cos a sin b + sin a cos b

= |z1||z2|ei(θ1+θ2).

So when multiplying complex numbers, we multiply moduli and add arguments.
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Exercise 1.18. Solve the equation z3 = −8.

Solution. Suppose z = |z|eiθ and z3 = −8. Then

z3 =
(

|z|eiθ
)3

= |z|3ei(3θ) = |z|3 (cos(3θ) + i sin(3θ)) .

Since | − 8| = 8, then |z|3 = 8 and |z| = 2. Next, −1 = cos 3θ + i sin 3θ and since

an argument of −1 is of the form π + 2kπ, we need 3θ = π + 2kπ, or θ =
π

3
+

2

3
kπ

where k ∈ Z. We get three non-coterminal values for θ:
π

3
, π,

5π

3
. This yields the

three solutions:

z1 = 2
(

cos
(π

3

)

+ i sin
(π

3

))

= 2

(

1

2
+

√
3

2
i

)

= 1 +
√

3i

z2 = 2(cosπ + i sinπ) = 2(−1 + 0i) = −2

z3 = 2

(

cos

(

5π

3

)

+ i sin

(

5π

3

))

= 2

(

1

2
−

√
3

2
i

)

= 1 −
√

3i.

Note. We denote the set of all complex numbers of modulus 1 as U : U = {z ∈
C | |z| = 1}. Since we multiply moduli when we multiply complex numbers, we

see that a product of two elements of U is again in U—that is, U is closed under

multiplication. In fact, the set U under multiplication is an example of a group.

Note. As in the previous example (where n = 3), we can compute the nth roots

of unity Un = {z ∈ C | zn = 1}. We find there are n such roots which can be

computed as

cos

(

m
2π

n

)

+ i sin

(

m
2π

n

)

for m = 0, 1, 2, . . . , n − 1.
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Since we add arguments when multiplying complex numbers, we find that Un is

closed under multiplication. In fact, the set Un under multiplication is also an

example of a group. In fact, since we add angles when multiplying, we find that

the elements of Un wrap around the unit circle |z| = 1 and multiplication of elements

of Un behave like the addition of hours on a clock. In fact, the structure of Un is

the same as that of Zn. Not surprisingly, addition modulo n is sometimes called

“clock arithmetic.”
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