Section I.2. Binary Operations

Note. In this section, we deal abstractly with operations on pairs (thus the term “binary”) of elements of a set. You are familiar with this concept in the settings of addition, subtraction, multiplication, and (except for 0) division of numbers. Two numbers, such as 9 and 3, yield through these four operations, the numbers 12, 6, 27, and 3, respectively. Notice that taking the 9 first and the 3 second affects the result for subtraction and division. That is, order matters for these operations.

Definition. A binary operation \ast on a set S is a function mapping $S \times S$ into S. For each (ordered pair) $(a, b) \in S \times S$, we denote the element $\ast((a, b)) \in S$ as $a \ast b$.

Example. The easiest examples of binary operations are addition and multiplication on \mathbb{R}. We could also consider these operations on different sets, such as \mathbb{Z}, \mathbb{Q}, or \mathbb{C}.

Note. As we’ll see, we don’t normally think of subtraction and division as binary operations, but instead we think of them in terms of manipulation of inverse elements with respect to addition and multiplication (respectively).

Example. A more exotic example of a binary operation is matrix multiplication on the set of all 2×2 matrices. Notice that “order matters” (and there is, in general, no such thing as “division” here).
Definition 2.4. Let $*$ be a binary operation on set S and let $H \subseteq S$. Then H is closed under $*$ if for all $a, b \in H$, we also have $a * b \in H$. In this case, the binary operation on H given by restricting $*$ to H is the induced operation of $*$ on H.

Example. Let $\mathcal{E} = \{n \in \mathbb{Z} \mid n \text{ is even}\}$ and let $\mathcal{O} = \{n \in \mathbb{Z} \mid n \text{ is odd}\}$. Then, \mathcal{E} is closed under addition (and multiplication). However, \mathcal{O} is NOT closed under addition (but is closed under multiplication).

Example. Consider the set of all 2×2 invertible matrices. The set is closed under matrix multiplication (recall $(AB)^{-1} = B^{-1}A^{-1}$), but not closed under matrix addition.

Definition 2.11. A binary operation $*$ on a set S is commutative if $a * b = b * a$ for all $a, b \in S$.

Example. Matrix multiplication on the set of all 2×2 matrices is NOT commutative.

Exercise 2.8a. Define $*$ on \mathbb{Q} as $a * b = ab + 1$. Is $*$ commutative (prove or find a counterexample)?
Definition 2.12. A binary operation \ast on a set S is associative if $(a\ast b)\ast c = a\ast (b\ast c)$ for all $a, b, c \in S$.

Exercise 2.8b. Define \ast on \mathbb{Q} as $a \ast b = ab + 1$. Is \ast associative (prove or find a counterexample)?

Note. We will study several algebraic structures by simply producing the “multiplication table” for the structure. For example, if $S = \{a, b, c\}$ and we have:

\[
\begin{align*}
 a \ast a &= b & a \ast b &= c & a \ast c &= b \\
 b \ast a &= a & b \ast b &= c & b \ast c &= b \\
 c \ast a &= c & c \ast b &= b & c \ast c &= a,
\end{align*}
\]

then we represent this binary operation as:

\[
\begin{array}{ccc}
 * & a & b & c \\
 a & b & c & b \\
 b & a & c & b \\
 c & c & b & a
\end{array}
\]

Notice that we read this as

$(i$th entry on left) \ast $(j$th entry on top) = (entry in the ith row and jth column).

Notice $a \ast b = c$ and $b \ast a = a$, so \ast is not commutative.

Notice. Binary operation \ast is commutative if and only if table entries of it are symmetric with respect to the diagonal running from the upper left to the lower right.
Note. When defining a binary operation \(*\) on a set \(S\), we must make sure that (see page 24):

1. Exactly one element of \(S\) is assigned to each possible ordered pair of elements of \(S\) (that is, \(*\) is defined on all of \(S\) and \(*\) is “well defined”).

2. For each ordered pair of elements of \(S\), the value assigned to it is again in \(S\) (that is, \(S\) is closed under \(*\)).

Example 2.21. Define \(a \ast b = a/b\) on \(\mathbb{Z}^+ = \mathbb{N} = \{n \in \mathbb{Z} \mid n > 0\}\). Then \(\mathbb{N}\) is not closed under \(*\) since, for example, \(1 \ast 2 = 1/2 \notin \mathbb{N}\).

Exercise 2.20. On \(\mathbb{N}\) define \(*\) by letting \(a \ast b = c\) where \(c\) is the smallest integer greater than both \(a\) and \(b\). Is this a binary operation on \(\mathbb{N}\)?

Exercise 2.26. Prove that if \(*\) is an associative and commutative binary operation on a set \(S\), then

\[(a \ast b) \ast (c \ast d) = [(d \ast c) \ast a] \ast b\]

for all \(a, b, c, d \in S\).

Exercise 2.36. Suppose \(*\) is associative on \(S\). Let

\[H = \{a \in S \mid a \ast x = x \ast a \text{ for all } x \in S\}\]

Prove that \(H\) is closed under \(*\).