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Section I.4. Groups

Note. The text gives an argument on pages 36 and 37 to motivate the idea that

“groups” are really related to what we classically call “algebra.”

Definition 4.1. A group 〈G, ∗〉 is a set G and a binary operation on G such that

G is closed under ∗ and

G1 For all a, b, c ∈ G, ∗ is associative:

(a ∗ b) ∗ c = a ∗ (b ∗ c).

G2 There is e ∈ G called the identity such that for all x ∈ G:

e ∗ x = x ∗ e = x.

G3 For all a ∈ G, there is an inverse a′ ∈ G such that:

a ∗ a′ = a′ ∗ a = e.

Example. Some familiar infinite groups include 〈R, +〉, 〈Z, +〉, 〈Q, +〉, and 〈C, +〉.

Another infinite group is the set of all n × n invertible matrices under matrix

multiplication. This is denoted GL(n, R), called the general linear group of order

n.

Example. The text also mentions the infinite group of complex numbers of the

form eiθ where θ ∈ R under multiplication, denoted 〈U, ·〉.
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Example. The finite group of integers modulo n under addition, 〈Zn, +n〉, is a

group. The nth roots of unity in the complex plane, 〈Un, ·〉, form a finite group

under multiplication. In fact, these are isomorphic binary structures (and hence,

isomorphic groups).

Definition 4.3. A group 〈G, ∗〉 (or just “G” for short) is abelian if its binary

operation is commutative.

Note. The groups 〈R, +〉, 〈Z, +〉, 〈Q, +〉, and 〈C, +〉, 〈U, ·〉, 〈Zn, +n〉, and 〈Un, ·〉

are all abelian groups. The group of invertible n× n matrices under matrix multi-

plication is a nonabelian group.

Example 4.8. The sets Q∗, R∗, and C∗ of nonzero numbers under multiplication

are abelian groups.

Exercise 4.8. We can also consider multiplication ·n modulo n in Zn. For example,

5 ·7 6 = 2 in Z7 because 5 ·6 = 30 = 4(7)+2. The set {1, 3, 5, 7} with multiplication

·8 modulo 8 is a group. Give the table for this group.

Exercise 4.18. Consider the set of all n × n matrices with determinant either 1

or −1 under matrix multiplication. Does this form a group? Recall that for n × n

matrices A and B, we have det(AB) = det(A)det(B), det(In) = 1, and that A is

invertible if and only if det(A) 6= 0.
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Note. At this stage, the only things we know about groups are the things given in

the definition. We’ll prove other properties now—you should not assume additional

properties that the above examples have as properties of all groups. Without proofs,

we have nothing but the definition.

Theorem 4.15. If 〈G, ∗〉 is a group, then

1. a ∗ b = a ∗ c implies b = c, and

2. b ∗ a = c ∗ a implies b = c

for all a, b, c ∈ G. These properties are called the left and right cancellation laws,

respectively.

Note. The following result shows that the equations of the form a ∗ x = b and

y ∗ a = b have unique solutions for all a, b ∈ G. This implies that the table for a

group must have every element of the group in each row and each column of the

group.

Theorem 4.16. If 〈G, ∗〉 is a group, then the equations a ∗ x = b and y ∗ a = b

have unique solutions x and y for all a, b ∈ G.

Theorem 4.17a. In group 〈G, ∗〉, there is only one element e ∈ G such that

e ∗ x = x ∗ e = x for all x ∈ G.

Theorem 4.17b. In a group 〈G, ∗〉, for given a ∈ G there is only one element

a′ ∈ G such that a′ ∗ a = a ∗ a′ = e. That is, inverses are unique.



I.4 Groups 4

Corollary 4.18. Let G be a group. For all a, b ∈ G, we have (a ∗ b)′ = b′ ∗ a′.

Theorem. Suppose ∗ is a binary operation on a set G. Then 〈G, ∗〉 is a group if

1. ∗ is associative,

2. there exists e` ∈ G such that for all x ∈ G, e` ∗ x = x (e` is called a left

identity), and

3. for each a ∈ G, there exists a′ ∈ G such that a′ ∗ a = e` (a′ is a left inverse of

a).

Proof. (Exercise 4.38). We need to establish G1 (which is 1), G2 and G3. For G2

let x ∈ G and consider x ∗ e`. For x′ the left inverse of x, we have

x′ ∗ (x ∗ e`) = (x′ ∗ x) ∗ e` by 1

= e` ∗ e` since x′ is a left inverse of x

= e` since e` is a left identity.

So x′ is a left inverse of x and also a left inverse of x∗ e`. However, left cancellation

holds and x′ ∗ x = x′ ∗ (x ∗ e`) implies that x = x ∗ e`. Therefore e` is a left and a

right inverse.

For G3, suppose a′ ∗ a = e` and consider a ∗ a′. We have

a′ ∗ (a ∗ a′) = (a′ ∗ a) ∗ a′ by 1

= e` ∗ a′ = a′

= a′ ∗ e` by the above result.

However, left cancellation holds and a′∗(a∗a′) = a′∗e` implies a∗a′ = e`. Therefore

a′ is also a right inverse of a.
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Note. Of course, the previous result holds with “left” replaced with “right.” The

benefit of a result like the previous one is that a binary structure can be shown to

be a group by showing (1) associativity, (2) a left identity, and (3) a left inverse for

each element. We know that we are then guaranteed the right hand identity and

inverses.

Note. For finite groups, we can draw a table illustrating the binary operation, as

before. Since the equations a ∗ x = b and y ∗ a = b have solutions x and y for all

a, b (Theorem 4.16), then each element of the group must appear in each row and

each column of the table.

Note. On pages 43–45, Fraleigh argues that there is only one group with one

element, only one group with two elements, and only one group with three elements.

Technically, all groups of these given sizes are isomorphic.

Historical Note. The “multiplication table” for a group is sometimes called a

Cayley table for the group. This is due to the fact that Arthur Cayley first in-

troduced the idea of a group in his 1854 paper “On The Theory of Groups, As

Depending on the Symbolic Equation θn = 1,” Philosophical Magazine, 7 (1854),

40-47. This work is available in The Collected Mathematical Works of Arthur Cay-

ley (pages 123–130) which can be found in Google books (and can be downloaded

in PDF). An example of one of the tables is the following:
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You will encounter this group in the next section as the Klein-4 group.
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