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Section I.5. Subgroups

Note. Just as a vector space can have a subspace, as you see in linear algebra, a

group can have a subgroup. As with vector spaces, this would be a subset with all

the structure of a group.

Definition 5.3. If G is a group, then the order |G| of G is the number of elements

in G.

Note. We will primarily study finite groups where the above definition is clear.

However, we will occasionally study infinite groups (such as 〈R, +〉).

Definition 5.4. If a subset H of a group G is closed under the binary operation

of G and if H with the induced operation from G is itself a group, then H is a

subgroup of G. We denote this as H ≤ G or G ≥ H. If H is a subgroup of G and

H 6= G, we write H < G or G > H.

Example. 〈Z, +〉 < 〈Q, +〉 < 〈R, +〉 < 〈C, +〉.

Example From Linear Algebra. 〈span{̂i, ĵ}, +〉 < 〈span{̂i, ĵ, k̂}, +〉.

Example 5.8. The nth roots of unity in C form a subgroup Un of the group 〈C∗, ·〉

(recall that C∗ = C \ {0}).
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Definition 5.5. If G is a group, then G itself is a subgroup of G called the improper

subgroup of G; all other subgroups are proper subgroups. The subgroup {e} is the

trivial subgroup; all other subgroups are nontrivial subgroups.

Example 5.9. There are two (nonisomorphic) groups of order 4. One is 〈Z4, +4〉 =

Z4:

Z4 :

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Then Z4 has three subgroups:

1. the trivial group {0},

2. the nontrivial, proper subgroup {0, 2}, and

3. the improper subgroup Z4.

The other group of order 4 is the Klein 4-group, denoted V (“V ” for the German

vier for four):

V :

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Notice that every element of V is its own inverse and this is not the case with Z4,

so the two groups are not isomorphic. V has five subgroups:
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1. the trivial group {e},

2. the nontrivial, proper subgroup {e, a},

3. the nontrivial, proper subgroup {e, b},

4. the nontrivial, proper subgroup {e, c}, and

5. the improper subgroup V .

Note. We can make a subgroup diagram (sometimes called a Hasse diagram) for

Z4 and V as follows:

Z4

{0, 2}

{0}

V
���

���

HHH
HHH

{e, b}

{e}

{e, a}
HHH

HHH

{e, c}
���

���

Note. We will see in Section II.8 that every group is a group of “permutations.”

This gives us the opportunity to visualize groups in terms of how they act on vari-

ous items. For example, suppose we have a rectangle (not a square) with numbered

corners. We want to see how many ways we can pick up the rectangle, rotate of flip

it around, and place it back in its original position. Different configurations can

be determined from the different arrangements of the labeled corners. The figure
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below shows that there are four configurations of the rectangle. These configura-

tions can be generated by the two movements labeled “flip horizontally” and “flip

vertically.” The group of order 4 which describes these “symmetries” of a rectangle

is isomorphic to the Klein 4-group.

Figures from Visual Group Theory by Nathan Carter, New York: Mathematical

Association of America, 2009.

Note. We now state a result which allows us to check a group for nontrivial,

proper subgroups. We also start using multiplicative notation to represent inverses:

a′ = a−1.

Theorem 5.14. A subset H of a group G is a subgroup of G if and only if:

1. H is closed under the binary operation of G,

2. the identity element e of G is in H, and

3. for all a ∈ H we have a′ = a−1 ∈ H.
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Exercise 5.10. Is the set of upper triangular n× n matrices with no zeros on the

diagonal a subgroup of GL(n, R)? Answer. Yes.

Exercise 5.16. Let F be the set of all real-valued functions with domain R and

let F̃ be the subset of F consisting of those functions that have a nonzero value at

every point in R. Is the subset of all f ∈ F̃ such that f(1) = 1 a subgroup of F

(a) under addition? Answer. No; not closed.

(b) under multiplication? Answer. Yes; identity is f(x) ≡ 1 and g−1 is 1/g(x).

Theorem 5.17. Let G be a multiplicative group and let a ∈ G. Then H = {an |

n ∈ Z} is a subgroup of G and is the “smallest” subgroup of G that contains a

(that is, every subgroup of G which contains a contains all the elements of H).

Note. In Theorem 5.17, by a0 we mean the identity e: a0 = e. By a−n where

n ∈ N, we mean (a−1)n: a−n = (a′)n = (a−1)n.

Definition 5.18. Let G be a group and let a ∈ G. Then the subgroup H = {an |

n ∈ Z} of G (of Theorem 5.17) is the cyclic subgroup of G generated by a, denoted

〈a〉.

Definition 5.19. An element a of a group G generates G if 〈a〉 = G. A group is

cyclic if there is a ∈ G such that 〈a〉 = G.
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Example 5.20. Z4 is cyclic since 〈1〉 = Z4. Also, 〈3〉 = Z4. In fact, Zn is cyclic

since Zn = 〈1〉. Are there other generators of Zn?

Note. The notation in Definition 5.18 is that of a multiplicative group, but Exam-

ple 5.20 is based on an additive group. In an additive group, 〈a〉 = {na | n ∈ Z}

(where 0a = 0 and −1a = −a by definition).

Example 5.12. 〈Z, +〉 is a cyclic group with generators 1 and −1.

Notation. We can generate subgroups of 〈Z, +〉 simply by considering 〈n〉 for

any n ∈ Z. We denote 〈n〉 as nZ. For example, 5Z = {. . . ,−10,−5, 0, 5, 10, . . . , }

Notice nZ = 〈n〉 = 〈−n〉.

Exercise 5.24. Describe the elements in the cyclic subgroup of GL(2, R) generated

by

 3 0

0 2

 .

Answer. Elements are of the form

 3n 0

0 2n

 where n ∈ Z.
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