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Section I.6. Cyclic Groups

Note. We’ll see that cyclic groups are fundamental examples of groups. In some

sense, all finite abelian groups are “made up of” cyclic groups. Recall that the

order of a finite group is the number of elements in the group.

Definition. Let G be a group and a ∈ G. If G is cyclic and G = 〈a〉, then (1)

if G is finite of order n, then element a is of order n, and (2) if G is infinite then

element a is of infinite order.

Theorem 6.1. Every cyclic group is abelian.

Note. We now state a result from number theory. The text offers “an intuitive

digrammatic explanation.” A truly rigorous proof would require a clear definition

of N in terms of sets.

Theorem 6.3. The Division Algorithm for Z

If m is a positive integer (i.e., m ∈ N) and n is any integer (i.e., n ∈ Z), then there

exist unique integers q and r such that n = mq + r and 0 ≤ r < m. q is called the

quotient and r the remainder when n is divided by m.
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Example. For n = 25 and m = 3, we have 25 = 3(8) + (1), so q = 8 and r = 1.

For n = −15 and m = 6 we have −15 = 6(−3) + (3), so q = −3 and r = 3 (notice

that r ≥ 0). In terms of the least integer function bxc, we have for general m and

n that q =
⌊ n

m

⌋
and r = n − m

⌊ n

m

⌋
= n − mq.

Note. The division algorithm is necessary when studying subgroups of cyclic

groups.

Theorem 6.6. A subgroup of a cyclic group is cyclic.

Recall. From the previous section we know that for all n ∈ Z, 〈n〉 = 〈−n〉 = nZ.

Since Z itself is cyclic (Z = 〈1〉), then by Theorem 6.6 every subgroup of Z must

be cyclic. We therefore have the following.

Corollary 6.7. The subgroup of 〈Z, +〉 are precisely the groups nZ = 〈n〉 (under

+) for n ∈ Z.

Exercise 6.20. Find the number of elements in the cyclic subgroup of the group

C∗ (of nonzero complex numbers under multiplication) generated by (1 + i)/
√

2.

Exercise 6.45. Let r, s ∈ N. Then A = {nr + ms | n, m ∈ Z} is a subgroup of Z.
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Note. By Corollary 6.7, the subgroup A of Z in Exercise 6.45 must be isomorphic

to nZ for some n ∈ Z. Therefore A is a cyclic group and has some (positive)

generator (namely, n). This generator is the greatest common divisor of r and s.

Definition 6.8. Let r, s ∈ N. The positive generator d of the cyclic group H =

{nr + ms | n, m ∈ Z} under addition is the greatest common divisor of r and s,

denoted gcd(r, s).

Note. You are probably familiar with finding greatest common divisors using fac-

toring into powers of primes and the Fundamental Theorem of Arithmetic. Recall

that if gcd(r, s) = 1, then r and s are relatively prime.

Note. The next result is a BIG DEAL!!! It gives a classification (up to isomor-

phism) of all cyclic groups. (It should be called “The Fundamental Theorem of

Cyclic Groups.”)

Theorem 6.10. Let G be a cyclic group with generator a. If G is of infinite order

then G is isomorphic to 〈Z, +〉. If G has finite order n, then G is isomorphic to

〈Zn, +n〉.
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Note. We have seen (page 30) that 〈Un, ·〉 and 〈Zn, +〉 are isomorphic groups.

This is consistent with the idea that addition modulo n is called “clock arithmetic.”

Under multiplication, the elements of Un cycle around the unit circle in the complex

plane (see page 63 for a picture). This further inspires the term “cyclic” group.

Note. Recall Corollary 6.7: “The subgroup of Z under addition are precisely the

groups nZ under addition for n ∈ Z.” So by Theorem 6.10, we can completely

classify the subgroup of infinite cyclic groups: “If G is an infinite cyclic group with

generator a, then the subgroup of G (under multiplication) are precisely the groups

〈an〉 where n ∈ Z.” We now turn to subgroups of finite cyclic groups.

Theorem 6.14. Let G be a cyclic group with n elements and with generator a.

Let b ∈ G where b = as. Then b generates a cyclic subgroup H of G containing n/d

elements where d = gcd(n, s). Also, 〈as〉 = 〈at〉 if and only if gcd(s, n) = gcd(t, n).

Exercise 6.28. Find all orders of subgroups of Z20.

Solution. This is an additive group with generator a = 1. With s = 2, b = as =

2(1) = 2 and 2 generates a subgroup of order n/d where d = gcd(20, 2) = 2, so

n/d = 20/2 = 10. With s = 4, 〈4〉 has order n/d = 20/4 = 5 elements. With s = 5,

〈5〉 has order n/d = 20/5 = 4. With s = 10, 〈10〉 has order n/d = 20/10 = 2.

Next, for s ∈ {3, 7, 9, 11, 13, 17, 19}, d = gcd(n, s) = 1 and n/d = 20; each of these

generate Z20. In totality, we get the subgroups:
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ORDER GENERATORS

1 0

2 10

4 5, 15

5 4, 8, 12, 16

10 2, 6, 14, 18

20 1, 3, 7, 9, 11, 13, 17, 19

This result based on Theorem 6.14, inspires the following.

Corollary 6.16. If a is a generator of a finite cyclic group G of order n, then the

other generators of G are the elements of the form ar, where r is relatively prime

to n.

Example. A subgroup diagram of Z20 is:

Z20
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〈2〉
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〈4〉
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HH

〈0〉
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Example (like Exercise 6.37). Give an example of a group which is finite, cyclic,

and has six generators.

Solution. By Theorem 6.10, we need only consider Zn. By Corollary 6.16 we want

n such that there are six elements of Zn which are relatively prime to n. We find

n = 9 yields generators 1, 2, 4, 5, 7, and 8.
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