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Section II.10. Cosets and the Theorem of Lagrange

Note. In this section, we prove that the order of a subgroup of a given finite group

divides the order of the group. This is called Lagrange’s Theorem. The proof

involves partitioning the group into sets called cosets. Later, we will form a group

using the cosets, called a factor group (see Section 14).

Theorem 10.1. Let H be a subgroup of group G. Let the relation ∼L be defined

on G by

a ∼L b iff a−1b ∈ H.

Let the relation ∼R be defined by

a ∼R b iff ab−1 ∈ H.

Then ∼L and ∼R are both equivalence relations on G.

Definition 10.2. Let H be a subgroup of a group G. The subset aH = {ah | h ∈

H} of G is the left coset of H containing a. The subset Ha = {ha | h ∈ H} is the

right coset of H containing a.

Note. Suppose x, y ∈ aH. Then x = ah1 and y = ah2 for some h1, h2 ∈ H. So

h1 = a−1x and h2 = a−1y. So a ∼L x and a ∼L y. Therefore, x ∼L y. Now e ∈ H

since H is a group, so a = ae ∈ aH. Equivalently, a−1a = e ∈ H, so a ∼L a. So

the coset aH is actually the ∼L equivalence class of elements of G which contains

a. Similarly, Ha is the ∼R equivalence class of elements of G which contains a.
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Exercise 10.4. Find the cosets of the subgroup 〈4〉 of Z12.

Solution. First, 〈4〉 = {0, 4, 8} and Z12 is an additive group. So we get the cosets:

0 + 〈4〉 = {0, 4, 8} = 〈4〉+ 0

1 + 〈4〉 = {1, 5, 9} = 〈4〉+ 1

2 + 〈4〉 = {2, 6, 10} = 〈4〉+ 2

3 + 〈4〉 = {3, 7, 11} = 〈4〉+ 3.

Now we get repetitions:

4 + 〈4〉 = 〈4〉+ 4 = 8 + 〈4〉 = 〈4〉+ 8 = 〈4〉

5 + 〈4〉 = 〈4〉+ 5 = 9 + 〈4〉 = 〈4〉+ 9 = 〈4〉+ 1

6 + 〈4〉 = 〈4〉+ 6 = 10 + 〈4〉 = 〈4〉+ 10 = 〈4〉+ 2

7 + 〈4〉 = 〈4〉+ 7 = 11 + 〈4〉 = 〈4〉+ 11 = 〈4〉+ 3.

So the distinct cosets are {0, 4, 8}, {1, 5, 9}, {2, 6, 10}, and {3, 7, 11}. Notice that

the cosets do in fact partition Z12. Also, the respective left and right cosets are

equal because Z12 is abelian. The partition can be illustrated in the Cayley table

as follows:
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Notice that the colors in this table hint at a group themselves:

In fact, this is the group structure of Z4.

Example 10.7. We now find left and right cosets for a nonabelian group. Consider

the group S3 and subgroup H = {ρ0, µ1}. Find the left and right cosets of H and

give a color coded Cayley table as above.

Solution. The Cayley table for S3 is

ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

The left cosets are:

ρ0H = µ1H = {ρ0, µ1}

ρ1H = µ3H = {ρ1, µ3}

ρ2H = µ2H = {ρ2, µ2}.
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The right cosets are:

Hρ0 = Hµ1 = {ρ0, µ1}

Hρ1 = Hµ2 = {ρ1, µ2}

Hρ2 = Hµ3 = {ρ2, µ3}.

Notice that the left cosets and right cosets yield different partitions of S3. We get

the Cayley table with the left cosets as:

For the right cosets, the Cayley table is:

Notice that in neither of the above two Cayley tables do we have the same type

of group structure as we did in the case of Z12. Details will follow in Section 14

(where we will see that a group can be made from the cosets when the left coset

partition and the right coset partition are the same).
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Lemma. Consider group G with subgroup H. Then every left coset of H and

every right coset of H have the same cardinality, namely |H|. That is, for any

coset g1H or Hg2, there are one-to-one and onto mappings φ1 and φ2 such that

φ1 : H → g1H and φ2 : H → Hg2.

Theorem 10.10. Theorem of Lagrange (“Lagrange’s Theorem”).

Let H be a subgroup of a finite group G. Then the order of H is a divisor of the

order of G.

Note. The text comments “Never underestimate results that count something!”

(their emphasis). We’ll use the Theorem of Lagrange to look for subgroups of

given groups—it tells us the possible orders of subgroups.

Note. Lagrange’s Theorem guarantees that the order of a subgroup divides the

order of a a group. However, the converse does not hold. That is, if |G| = n and

m | n, then there is not necessarily a subgroup of G of order m. For example,

the alternating group A4 (of order 4!/2 = 12) does not have a subgroup of order

6—this will be shown in Example 15.6 on page 146.

Corollary 10.11. Every group of prime order is cyclic.
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Note. In the proof of Corollary 10.11, a could be any element of G other than the

identity. So a group of prime order is cyclic and any non-identity element of the

group is a generator.

Note. By Theorem 6.10, we know that any cyclic group of order n is isomorphic

to Zn. So we can use Corollary 10.11 to say: “If p is a prime, then there is, up to

isomorphism, only one group of order p, namely Zp.”

Theorem 10.12. The order of an element of a finite group divides the order of

the group.

Definition 10.13. Let H be a subgroup of group G. The number of left cosets of

H in G (technically, the cardinality of the set of left cosets) is the index of H in G,

denoted (G : H).

Note. For finite group G, (G : H) = |G|/|H|.

Note. Since the cardinality of a left coset of H is the same as the cardinality of a

right coset of H, then (G : H) can also be defined as the “number” of right cosets

of H in G. Exercise 10.35 has you give the details for this claim. The proof of the

next theorem is to be given in Exercise 10.38.
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Theorem 10.14. Suppose H and K are subgroups of group G where K ≤ H ≤ G.

Suppose (H : K) and (G : H) are finite. Then (G : K) is finite and

(G : K) = (G : H)(H : K).
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