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Section II.11. Direct Products and Finitely Generated

Abelian Groups

Note. In the previous section, we took given groups and explored the existence

of subgroups. In this section, we introduce a process to build new (bigger) groups

from known groups. This process will allow us to classify all finite abelian groups.

Definition 11.1. The Cartesian product of sets S1, S2, . . . , Sn of the set of all

ordered n-tuples (a1, a2, . . . , an) where ai ∈ Si for i = 1, 2, . . . , n. This is denoted

n∏
i=1

Si = S1 × S2 × · · · × Sn.

Theorem 11.2. Let G1, G2, . . . , Gn be (multiplicative) groups. For (a1, a2, . . . , an),

(b1, b2, . . . , bn) ∈
∏

Gi, define the (multiplicative) binary operation

(a1, a2, . . . , an)(b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn).

The
∏

Gi is a group under this binary operation, called the direct product of the

groups Gi.
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Note. If each Gi is an additive group, then we may refer to
∏

Gi as the direct sum

of the groups Gi and denote it as

G1 ⊕G2 ⊕ · · · ⊕Gn.

However, this is simply a matter of notation—the concepts are always the same

regardless of whether we use additive or multiplicative notation.

Note. Of course, if |Gi| = ri then

∣∣∣∣∣
n∏

i=1

Gi

∣∣∣∣∣ = r1r2 · · · rn.

Exercise 11.2. List the elements of Z3 × Z4. Is this group cyclic?

Solution. Well, Z3 × Z4 = {(a, b) | a ∈ Z3, b ∈ Z4}, so

Z3 × Z4 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2),

(1, 3), (2, 0), (2, 1), (2, 2), (2, 3)}.

Since 1 is a generator of both Z3 and Z4, lets consider powers of (1, 1) ∈ Z3 × Z4:

{n(1, 1) | n ∈ Z} = {(0, 0), (1, 1), (2, 2), (0, 3), (1, 0), (2, 1), (0, 2),

(1, 3), (2, 0), (0, 1), (1, 2), (2, 3)} = Z3 × Z4.

So (1, 1) is a generator of Z3 × Z4 and it is cyclic.

Note. So we see that Z3 × Z4 is a cyclic group of order 12. Now, Z12 is also a

cyclic group of order 12. By Theorem 6.10, there is (up to isomorphism) only one

cyclic group of order 12. So Z3 × Z4
∼= Z12.
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Note. The trick of generating Z3 × Z4 with element (1, 1) will not work for just

any product of groups. For example, (1, 1) is not a generator of Z2 × Z2:

{n(1, 1) | n ∈ Z} = {(0, 0), (1, 1)} 6= Z2 × Z2.

Definition. For r1, r2, . . . , rn ∈ N, the smallest element of N that is a multi-

ple of each ri for i = 1, 2, . . . , n, is the least common multiple of the ri, denoted

lcm(r1, r2, . . . , rn).

Theorem 11.5. The group Zm×Zn is cyclic and is isomorphic to Zmn if and only

if m and n are relatively prime (i.e., gcd(m, n) = 1).

Note. Theorem 11.5 can be generalized to a direct product of several cyclic groups:

Corollary 11.6. The group
n∏

i=1

Zmi
is cyclic and isomorphic to Zm1m2···mn

if and

only if mi and mj are relatively prime for i 6= j. That is, gcd(mi, mj) = 1 if i 6= j.

Note. If the mi’s of Corollary 11.6 are powers of different primes, then gcd(mi, mj) =

1 and so we can conclude:

Corollary. Let p1, p2, . . . , pr be different prime numbers and let n1, n2, . . . nr ∈ N.

Define mk = (pk)
nk. Then Zm1m2···mr

= Z(p1)n1(p2)n2 ···(pr)nr is isomorphic to

Zm1
× Zm2

× · · · × Zmr
= Z(p1)n1 × Z(p2)n2 × · · · × Z(pr)nr .
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Example. This corollary allows us to conclude the following: Z6
∼= Z2 × Z3,

Z12
∼= Z3 × Z4, Z30

∼= Z2 × Z3 × Z5, Z210
∼= Z2 × Z3 × Z5 × Z7, etc.

Theorem 11.9. Let (a1, a2, . . . , an) ∈
∏

Gi. If ai is of finite order ri in Gi,

then the order of (a1, a2, . . . , an) in
∏

Gi is the least common multiple of the ri,

lcm(r1, r2, . . . , rn).

Exercise 11.6. Find the order of (3, 10, 9) in Z4 × Z12 × Z15.

Solution. To use Theorem 11.9, we need to find the orders of the elements in their

respective cyclic groups. By Theorem 6.14, the order of 3 in Z4 is 4/gcd(3, 4) =

4/1 = 4. The order of 10 in Z12 is 12/gcd(10, 12) = 12/2 = 6. The order of 9

in Z15 is 15/gcd(9, 15) = 15/3 = 5. So by Theorem 11.9, (3, 10, 9) is of order

lcm(4, 6, 5) = 60.

Note. The following is a very big deal! Part of the goal of algebra is to classify

all groups. Cayley’s Theorem (Theorem 8.16) tells us that every group is a group

of permutations. However, this does not tell us much about what the groups are.

The following result, on the other hand, gives the exact structure of each finitely

generated abelian group.
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Theorem 11.12. Fundamental Theorem of Finitely Generated Abelian

Groups.

Every finitely generated abelian group G is isomorphic to a direct product of cyclic

groups in the form

Z(p1)r1 × Z(p2)r2 × · · · × Z(pn)rn × Z × Z · · · × Z

where the pi are primes, not necessarily distinct, and the ri are positive integers.

The direct product is unique except for possible rearrangement of the factors; that

is, the number of factors of Z is unique (called the Betti number of G) and the

prime powers (pi)
ri are unique.

Note. The proof of this is complicated and given in Section VII.38.

Note. As a corollary, we can observe that for a finite abelian group the Betti

number is 0 and the structure is given by a direct product of cyclic groups of

orders of certain powers of primes.
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Exercise 11.24. Find all abelian groups (up to isomorphism) of order 720.

Solution. First, we need to factor 720: 720 = 24 · 32 · 5. For the factor 24 we get

the following groups (this is a list of non-isomorphic groups by Theorem 11.5):

Z16, Z2 × Z8, Z2 × Z2 × Z4, Z2 × Z2 × Z2 × Z2, and Z4 × Z4.

The factor 32 yields: Z9 and Z3 × Z3. Factor 5 yields: Z5. So we get a total of 10

possible groups of order 720:

Z16 × Z9 × Z5 Z16 × Z3 × Z3 × Z5

Z2 × Z8 × Z9 × Z5 Z2 × Z8 × Z3 × Z3 × Z5

Z2 × Z2 × Z4 × Z9 × Z5 Z2 × Z2 × Z4 × Z3 × Z3 × Z5

Z2 × Z2 × Z2 × Z2 × Z9 × Z5 Z2 × Z2 × Z2 × Z2 × Z3 × Z3 × Z5

Z4 × Z4 × Z9 × Z5 Z4 × Z4 × Z3 × Z3 × Z5

Definition 11.14. A group G is decomposable if it is isomorphic to a direct product

of two proper nontrivial subgroups. Otherwise G is indecomposable.

Theorem 11.15. The finite indecomposable abelian groups are exactly the cyclic

groups with order a power of a prime.

Note. Recall that Lagrange’s Theorem implies that the order of a subgroup must

divide the order of the group. The converse does not hold in general since A4 (of

order 4!/2 = 12) has no subgroup of order 6 (this will be shown in Example 15.6

on page 146). The following result shows that the converse of Lagrange’s Theorem

does hold for abelian groups.
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Theorem 11.16. If m divides the order of a finite abelian group G, then G has a

subgroup of order m.

Note. Theorem 11.16 does not hold in general for nonabelian groups, but it does

hold in the special case when m is prime. Namely, we have the following which is

Theorem 36.3 from page 322:

Cauchy’s Theorem. Let p be prime. Let G be a finite group and suppose p

divides |G|. Then G has a subgroup of order p.

The fact that Cauchy’s Theorem does not appear for another 200 pages implies

that we have a good deal more information to learn before we can get deeper into

this aspect of our exploration of group theory.

Theorem 11.17. If m is a square free integer (that is, no prime factor of m is of

multiplicity greater than 1), then every abelian group of order m is cyclic.
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