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Part II. Permutations, Cosets, and

Direct Products

Section II.8. Groups of Permutations

Note. In this section, we introduce groups which consist of functions acting on sets

of elements. In particular, we consider how a set of n elements can be permuted

around. Recall that a permutation of a set on n elements is a way to arrange the n

elements. The number of ways to arrange (or order) n elements from a set of size

n is n! = n(n− 1)(n− 2) · · · (3)(2)(1).

Note. A fundamental result of this section is that every group is related to a

group of permutations (see Theorem 8.16, Cayley’s Theorem, for details). So there

is something very fundamental about groups of permutations.

Note. We use lower case Greek letters to represent permutations. First, by defi-

nition, we have:

Definition 8.3. A permutation of a set A is a function ϕ : A → A that is both

one-to-one and onto.

Lemma. If σ and τ are permutations on set A, then the composite function σ ◦ τ

(defined as A
τ→ A

σ→ A) is a permutation on A. Normally we drop the composition

symbol ◦ and write σ ◦ τ = στ . Notice that we must read this from right to left

since στ is permutation τ first, followed by permutation σ.
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Note. Since we can compose permutations on a given set A, then permutation

composition (called permutation multiplication) is a binary operation on the set S

of all permutations of set A. As we’ll see, this binary structure is, in fact, a group.

Note. The standard notation for a permutation on a finite set is to write the

elements of the set as the first row of a matrix and the corresponding images of the

elements as the second row.

Example. Suppose A = {1, 2, 3, 4, 5, 6} and

σ(1) = 3 τ(1) = 2

σ(2) = 1 τ(2) = 4

σ(3) = 4 τ(3) = 1

σ(4) = 5 τ(4) = 3

σ(5) = 6 τ(5) = 6

σ(6) = 2 τ(6) = 5

then we represent σ and τ as

σ =

 1 2 3 4 5 6

3 1 4 5 6 2

 and τ =

 1 2 3 4 5 6

2 4 1 3 6 5

 .

To take the permutation product στ , we take each element a of set A, first use τ

to find the image of a under τ , say a′ = τ(a), and then find the image of a′ under
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σ. So

στ =

 1 2 3 4 5 6

3 1 4 5 6 2

  1 2 3 4 5 6

2 4 1 3 6 5


implies

(στ)(1) = σ(τ(1)) = σ(2) = 1

(στ)(2) = σ(τ(2)) = σ(4) = 5

(στ)(3) = σ(τ(3)) = σ(1) = 3

(στ)(4) = σ(τ(4)) = σ(3) = 4

(στ)(5) = σ(τ(5)) = σ(6) = 2

(στ)(6) = σ(τ(6)) = σ(5) = 6,

so

στ =

 1 2 3 4 5 6

1 5 3 4 2 6

 .

Exercise 8.2. For σ and τ as above, find τ 2σ.

Solution 1. We can find τ 2:

τ 2 =

 1 2 3 4 5 6

2 4 1 3 6 5

  1 2 3 4 5 6

2 4 1 3 6 5

 =

 1 2 3 4 5 6

4 3 2 1 5 6

 ,

and then τ 2σ:

τ 2σ =

 1 2 3 4 5 6

4 3 2 1 5 6

  1 2 3 4 5 6

3 1 4 5 6 2

 =

 1 2 3 4 5 6

2 4 1 5 6 3

 .
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Solution 2. We can write out the three permutations and simply follow the

elements (from right to left):

τ 2σ = ττσ =

 1 2 3 4 5 6

2 4 1 3 6 5

  1 2 3 4 5 6

2 4 1 3 6 5

  1 2 3 4 5 6

3 1 4 5 6 2



=

 1 2 3 4 5 6

2 4 1 5 6 3



Theorem 8.5. Let A be a nonempty set, and let SA be the collection of all

permutations of A. Then SA is a group under permutation multiplication.

Note. The text warns (page 78) that some other books write permutations in

left-to-right order, so that “σµ” would mean first permutation σ, then followed by

permutation µ (which is backwards from Fraleigh’s notation).

Note. At the stage (we are more than 1/3 of the way through the material of

Introduction to Modern Algebra 1), you are probably wondering what all this group

stuff has to do with what you have previously thought of as “algebra”! In the quest

for an algebraic formula that would give all the roots of an nth degree polynomial

(basically, a “quadratic equation” but not just for a degree 2 polynomial, but for

an nth degree polynomial). Algebraic formulae for 1st degree (easy), 2nd degree

(the quadratic equation), 3rd degree (hard) and 4th degree (hard) polynomials are

known. An interesting history of the least two results is given in Unknown Quantity:

A Real and Imaginary History of Algebra, by John Derbyshire, Plume Publishing,
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2007. While looking for a general formula, Joseph-Louis Lagrange (1736–1813)

and others considered how an algebraic formula would relate to permutations of

the roots of a polynomial. This lead to set A being the set of roots and SA the

“group” of permutations of the roots. The “standard notation” of a permutation

is due to Augustin-Louis Cauchy (1789–1857). (See the Historical Notes on pages

38, 39, and 77.) Amazingly, it was shown using permutation groups that there is

not an algebraic formula for the roots of a polynomial of degree n when n ≥ 5.

This was shown by Niels Henrik Abel (1802–1829), a Norwegian mathematician.

Our term “abelian” for a group in which commutivity holds is in commemoration

of Abel. The precise conditions under which a polynomial equation can be solved

algebraically (i.e., “in terms of radicals”) was given in 1831 by Evariste Galois

(1811–1832). (Notice how young he was!) We’ll encounter Galois again in Section

III.13 when we discuss normal subgroups. Also, notice that the title of Section

X.53 is Galois Theory.

Definition 8.6. Let A be the finite set {1, 2, . . . , n}. The group of all permutations

of A is the symmetric group on n letters, denoted Sn.

Note. A simple counting argument shows that |Sn| = n! = n(n−1)(n−2) · · · (3)(2)(1):

In counting the permutations, notice that there are n choices for what 1 is mapped

to (namely, 1, 2, 3, . . . , n − 1, or n). Then there are n − 1 choices for what 2 is

mapped to (namely, all of 1, 2, . . . , n − 1, n except for what 1 was mapped to).

There are then n − 2 choices for what 3 is mapped to, and so forth. We multiply

together the number of choices for each case and n! results.
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Example 8.7. The symmetric group on 3 letters S3 has the following elements,

where A = {1, 2, 3}:

ρ0 =

 1 2 3

1 2 3

 µ1 =

 1 2 3

1 3 2


ρ1 =

 1 2 3

2 3 1

 µ2 =

 1 2 3

3 2 1


ρ2 =

 1 2 3

3 1 2

 µ3 =

 1 2 3

2 1 3



The multiplication table for S3 is then:

ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0

Notice that S3 is nonabelian: ρ2µ1 = µ3 6= µ2 = µ1ρ2. In fact, order 6 (as we will

see) is the smallest possible order of a nonabelian group. Also notice that S3 is

generated by {ρ1, µ1}. If we represent ρ1 with −→ and µ1 with - - - - (notice that

µ2
1 = ρ0 = identity), then the Cayley digraph for S3 is:
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Example. The dihedral group D3 is the group of all symmetries of an equilateral

triangle. That is, we have an element of D3 if we have a particular way to pick up

a rigid equilateral triangle, rotate or flip it around, and place it back down so that

it lies over its original position. For example, we might pick up the triangle, rotate

it 120◦ counterclockwise and place it back down:

There are six such ways to manipulate the triangle. In fact, D3
∼= S3. In the table

above, ρ0, ρ1, ρ2 represent rotations of the triangle, and µ1, µ2, µ3 represent mirror

images of the triangle (which fixes one number/vertex and interchanges the other

two).
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Note. In general, the nth dihedral group Dn is the group of symmetries of a regular

n-gon. Exercise 8.44 has you give a geometric argument (as opposed to a “proof”)

that Dn actually is a group. In fact, |Dn| = 2n.

Example 8.10. The dihedral group D4 has 8 elements and is sometimes called

the octic group. Since n is even, there is an additional symmetry from that of the

triangle. A square can be rotated, a mirror image can be taken, and it can be

diagonally flipped:

These three procedures inspire the following notation:

ρ0 =

 1 2 3 4

1 2 3 4

 µ1 =

 1 2 3 4

2 1 4 3


ρ1 =

 1 2 3 4

2 3 4 1

 µ2 =

 1 2 3 4

4 3 2 1


ρ2 =

 1 2 3 4

3 4 1 2

 δ1 =

 1 2 3 4

3 2 1 4


ρ3 =

 1 2 3 4

4 1 2 3

 δ2 =

 1 2 3 4

1 4 3 2


Notice that D4 is a subgroup of S4 (D4 < S4). It is fairly intuitive that a (nonzero)

rotation followed by a mirror image or diagonal flip is not the same as the mirror
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image or diagonal flip followed by a (nonzero) rotation. That is, D4 is not an

abelian group. This is confirmed as well by considering the multiplication table

ρ0 ρ1 ρ2 ρ3 µ1 µ2 δ1 δ2

ρ0 ρ0 ρ1 ρ2 ρ3 µ1 µ2 δ1 δ2

ρ1 ρ1 ρ2 ρ3 ρ0 δ1 δ2 µ1 µ2

ρ2 ρ2 ρ3 ρ0 ρ1 µ2 µ1 δ2 δ1

ρ3 ρ3 ρ0 ρ1 ρ2 δ2 δ1 µ1 µ2

µ1 µ1 δ2 µ2 δ1 ρ0 ρ2 ρ3 ρ1

µ2 µ2 δ1 µ1 δ2 ρ2 ρ0 ρ1 ρ3

δ1 δ1 µ1 δ2 µ2 ρ1 ρ3 ρ0 ρ2

δ2 δ2 µ2 δ1 µ1 ρ3 ρ1 ρ2 ρ0

The subgroup diagram is:

D4

{ρ0, ρ2, µ1, µ2} {ρ0, ρ1, ρ2, ρ3} {ρ0, ρ2, δ1, δ2}
�

�
�

A
A
A

PPPPPPPP
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A
A
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����

HH
HHHH

{ρ0, ρ2}

{ρ0}

{ρ0, µ2}{ρ0, µ1}
HH

HHHH

{ρ0, δ1} {ρ0, δ2}
��

����

�����������

PPPPPPPPPPP

Fraleigh goes a little nerdy here and refers to this group as “simply beautiful” and

(twice) as having “lovely symmetries” (page 81)!
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Note. We also have that D4 is generated by a set consisting of two elements

{ρ1, µ1}, say. (Can you guess why these groups are called dihedral groups?) This

really means that all of the symmetries of a square result from a sequence of rota-

tions and mirror images (or also, for example, rotations and diagonal flips). With

ρ1 represented as −→ and µ1 as - - - (notice µ2
1 = ρ0 =identity), we get the Cayley

digraph:

Example. Use the Cayley digraph to write the mirror image µ2 as a product of

elements of {ρ1, µ1}.

Solution. We need either (1) a path from ρ1 to µ2, or (2) a path from µ1 to µ2

in the above Cayley digraph. We can use, for example, (1) ρ1ρ1µ1 and (2) µ1ρ1ρ1.

Other solutions are ρ1µ1ρ1ρ1ρ1, µ1ρ1ρ1µ1µ1, and ρiρ1ρ1ρ1µ1ρ1. Notice that it is

impossible to write µ2 purely in terms of ρ1’s or purely in terms of µ1’s. Of course,

D4 does not have a single generator, or else it would be a cyclic group and then

would be (by Theorem 6.1) abelian.
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Note. You’ll notice that in the table for any group, each row and each column

represents a permutation of the elements of the group. This is circumstantial

evidence that there is a deep connection between permutation groups and groups

in general. Of course, not every group is a permutation group (for example, finite

permutation groups are of orders n! for n ∈ N, and there exist groups of different

orders—take Zn where n is not the factorial of some other natural number). The

big result in this direction is Cayley’s Theorem and states that every group is

isomorphic to a group of permutations (a finite “group of permutations” must be

a subgroup of SG for some finite set G). Before we prove Cayley’s Theorem, we

need a preliminary result and another definition.

Definition 8.14. Let f : A → B for sets A and B. Let H ⊂ A. The image of set

H under f is {f(h) | h ∈ H}, denoted f [H].

Lemma 8.15. Let G and G′ be groups and let ϕ : G → G′ be a one-to-one function

such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G. Then ϕ[G] is a subgroup of G′ and ϕ

is an isomorphism of G with ϕ[G].

Theorem 8.16. Cayley’s Theorem. Every group is isomorphic to a group of

permutations.

Note. Don’t confuse “group of permutations” with the “permutation group” (i.e.,

the group of ALL permutations on a set) in the statement of Cayley’s Theorem.
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Note. The map ϕ defined in the proof of Cayley’s Theorem is called the left regular

representation of G for all x ∈ G, ϕ(x) = λx where λx(g) = xg for all g ∈ G. Notice

that the x in the definition of λx is multiplied on the left. A similar definition can

be made using multiplication on the right and the right regular representation of

G.
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