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Part I1I1. Homomorphisms and Factor

Groups

Section II1.13. Homomorphisms

Note. So far our study of algebra has been a study of the structure of groups.
By “structure” I mean such properties as abelian or nonabelian, the number of
generators, the orders of subgroups, the types of subgroups, etc. The idea behind
a homomorphism between two groups is that it is a mapping which preserves the
binary operation (from which all “structure” follows), but may not be a one to one
and onto mapping (and so it may lack the preservation of the “purely set theoretic”

properties, as the text says).

Definition 13.1. A map ¢ of a group G into a group G’ is a homomorphism if for
all a,b € G we have p(ab) = ¢(a)p(b).

Note. We see that ¢ : G — G’ is an isomorphism if it is a one to one and onto

homomorphism.

Note. There is always a homomorphism between any two groups G and G'. If €' is
the identity element of G’ then ¢(g) = €’ for all g € G is a homomorphism called

the trivial homomorphism.
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Example 13.2. Suppose ¢ : G — G’ is a homomorphism and ¢ is onto G’. If
(7 is abelian then G’ is abelian. Notice that this shows how we can get structure

preservation without necessarily having an isomorphism.

Example 13.8. Let G = G; Xx Gy x --- x G; X --- x (G, be a direct prod-
uct of groups G4,Go,...,G,. Define the projection map m : G — G; where
mi((91,925 - -+ Gis - -, 9n)) = gi- Then 7; is a homomorphism.

Exercise 13.10. Let F' be the additive group of all continuous functions mapping
R into R. Let R be the additive group of real numbers and let ¢ : FF — R be given
4
by p(f) = / f(z) dx. Then ¢ is a homomorphism.
0

Definition 13.11. Let ¢ be a mapping of a set X into a set Y, and let A C X
and B C Y. The image of A in Y under ¢ is p[A] = {p(a) | a € A}. The set p[X]

is the range of ¢ (notice that ¢ is defined on all of X and we can take X as the
domain of ¢). The inverse image of B in X is o ![B] = {x € X | p(x) € B}.

Theorem 13.12. Let ¢ be a homomorphism of a group G into group G'.
(1) If e is the identity in G, then p(e) is the identity element €’ in G.
(2) If a € G then p(a™') = (p(a) —1.

(3) If H is a subgroup of G, then p[H] is a subgroup of G.

(4) If K’ is a subgroup of G/, then ¢ 1[K] is a subgroup of G.
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Note. Theorem 13.12 shows that homomorphisms map identities to identities,

inverses to inverses, and subgroups (back and forth) to subgroups.

Note. By Theorem 13.12 part (4), we know that for K < G’, where K = {€'}, we
have ¢ ![K] < G. This subgroup ¢ 1[K] includes all elements of G mapped under
¢ to €. You encountered a similar idea in linear algebra when considering an m x n
matrix A as a linear transformation from R" to R™. R" and R™ are groups (by
Theorem 11.2) and multiplication on the left by A is a homomorphism from R"
into R since A(vV + W) = AU+ A for all v, @ € R" (this is Example 13.5). The
identity in R™ is 0 and the elements of R” mapped to 0 form the nullspace of A.
That is, the nullspace of A is A™'[{0}] (here, we use the symbol A~" in the sense
of an inverse image of a set under a mapping, not in the sense of the inverse of
matrix A which may or may not exist). Recall that the nullspace of A is related to
the invertibility of matrix A (and so, indirectly at least, to whether the mapping
A :R" — R™ is one to one and onto—that is, whether it is an isomorphism). In

short, the elements of G mapped to the identity of G’ are important!

Definition 13.13. Let ¢ : G — G’ be a homomorphism. The subgroup ¢~ ![{e'}] =
{r € G| p(z) = €} (where € is the identity in G) is the kernel of ¢, denoted

Ker(p).

Exercise 13.18. Let ¢ : Z — Zjy be a homomorphism such that ¢(1) = 6. Find
Ker(yp).



I11.13 Homomorphisms 4

Note. The following result relates Ker(y) to cosets.

Theorem 13.15. Let ¢ : G — G’ be a group homomorphism and let H = Ker(y).
Let a € G. Then the set

o {ela)}] = {z € G| ¢(z) = p(a)}

is the left coset aH of H, and is also the right coset Ha of H. So, the two partitions

of G into left cosets and right cosets (see Section 11.10) are the same.

Note. Recall that ¢ may not be one to one. In fact, if Ker(¢) # {e}, then we
know that ¢ is not one to one (in fact this is an “if and only if” observation— see
Corollary 13.18 below). So we can think of ¢ as a “many to one” mapping (for

2 is a two to one mapping for x # 0 since every nonzero element

example, f(z) = x
of the range is the image of two elements in the domain). Theorem 13.15 tells us
that ¢ maps many elements of G onto single elements of G'. That is, ¢ maps the
cosets aH and Ha onto the same element of G'—namely ¢(a). We exhibited a one
to one mapping between the different cosets of G with respect to subgroup H in
the Lemma stated before the proof of Lagrange’s Theorem (see the class notes from
Section I1.10 or page 100 of the text), so all cosets of H are of the same cardinality
(this cardinality is the “many” in the “many to one” mentioned above). We can

think of ¢ as “collapsing down” (the text’s wording—see page 129) the cosets of

H onto individual elements of G’. See Figure 13.14 on page 130 or consider:
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Notice, for example, that o [{p(a)}] is the coset aH = Ha. Now for the proof.

Example 13.17. Let D be the additive group of all differentiable functions map-
ping R into R, and let F' be the additive group of all functions mapping R into
R. Define ¢ : D — f as the differentiation operator ¢(f) = f’. Then ¢ is a

homomorphism since for all f,¢g € D we have

p(f+9)=(f+9) =f+d=¢(f)+e9)
Now Ker(yp) = {f € D | f' = 0}, so Ker(p) is the set of all constant functions
(which, of course, is a subgroup of D, call it C'). We know 2% € F so lets find all

elements of D mapped under ¢ to %

{feDl|o(f)=[f =1"€F}

We know from Calculus 1 (MATH 1910) that this is the set of all functions of the
1 1
form f(x) = §x3+k for some constant k. We denote this set as /x2 dx = §:133+C’.

By Theorem 13.15, this set is the coset of Ker(p) of 22C: 2°C = /:U2 d.
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Note. The following result tells us when a homomorphism ¢ is “one to one” versus

“many to one,” in terms of Ker(y).

Corollary 13.18. A group homomorphism ¢ : G — G’ is a one to one map if and

only if Ker(p) = {e}.

Exercise 13.34. Is there a nontrivial homomorphism from Z to Z,?

Note. We'll see in the next section that when the left and right cosets of subgroup
H are the same, gH = Hg for all g € G, then we can form a group out of the cosets
of H (as discussed informally in Section 11.10). Such subgroups H are useful in the
study of nonabelian groups (we already have a classification of abelian groups in

Theorem 11.12—at least, finitely generated abelian groups).

Definition 13.19. A subgroup H of a group G is normal if its left and right cosets
coincide, that is if gH = Hg for all g € G. Fraleigh simply says “H is a normal

subgroup of GG,” but a common notation is H < G.

Note. If GG is abelian, then all subgroups of G' are normal.

Corollary 13.20. If ¢ : G — G’ is a homomorphism, then Ker(y) is a normal
subgroup of G.
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Note. We’ll see more on normal subgroups in Section III.15 and a lot more in

Section III.16 in connection with simple groups.

Exercise 13.50. Let ¢ : G — H be a group homomorphism. Then ¢[G] is abelian

if and only if for all x,y € G we have xyz 1y~ € Ker(p).
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