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Part III. Homomorphisms and Factor

Groups

Section III.13. Homomorphisms

Note. So far our study of algebra has been a study of the structure of groups.

By “structure” I mean such properties as abelian or nonabelian, the number of

generators, the orders of subgroups, the types of subgroups, etc. The idea behind

a homomorphism between two groups is that it is a mapping which preserves the

binary operation (from which all “structure” follows), but may not be a one to one

and onto mapping (and so it may lack the preservation of the “purely set theoretic”

properties, as the text says).

Definition 13.1. A map ϕ of a group G into a group G′ is a homomorphism if for

all a, b ∈ G we have ϕ(ab) = ϕ(a)ϕ(b).

Note. We see that ϕ : G → G′ is an isomorphism if it is a one to one and onto

homomorphism.

Note. There is always a homomorphism between any two groups G and G′. If e′ is

the identity element of G′, then ϕ(g) = e′ for all g ∈ G is a homomorphism called

the trivial homomorphism.
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Example 13.2. Suppose ϕ : G → G′ is a homomorphism and ϕ is onto G′. If

G is abelian then G′ is abelian. Notice that this shows how we can get structure

preservation without necessarily having an isomorphism.

Example 13.8. Let G = G1 × G2 × · · · × Gi × · · · × Gn be a direct prod-

uct of groups G1, G2, . . . , Gn. Define the projection map πi : G → Gi where

πi((g1, g2, . . . , gi, . . . , gn)) = gi. Then πi is a homomorphism.

Exercise 13.10. Let F be the additive group of all continuous functions mapping

R into R. Let R be the additive group of real numbers and let ϕ : F → R be given

by ϕ(f) =

∫ 4

0
f(x) dx. Then ϕ is a homomorphism.

Definition 13.11. Let ϕ be a mapping of a set X into a set Y , and let A ⊆ X

and B ⊆ Y . The image of A in Y under ϕ is ϕ[A] = {ϕ(a) | a ∈ A}. The set ϕ[X]

is the range of ϕ (notice that ϕ is defined on all of X and we can take X as the

domain of ϕ). The inverse image of B in X is ϕ−1[B] = {x ∈ X | ϕ(x) ∈ B}.

Theorem 13.12. Let ϕ be a homomorphism of a group G into group G′.

(1) If e is the identity in G, then ϕ(e) is the identity element e′ in G′.

(2) If a ∈ G then ϕ(a−1) = (ϕ(a))−1.

(3) If H is a subgroup of G, then ϕ[H] is a subgroup of G′.

(4) If K ′ is a subgroup of G′, then ϕ−1[K] is a subgroup of G.
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Note. Theorem 13.12 shows that homomorphisms map identities to identities,

inverses to inverses, and subgroups (back and forth) to subgroups.

Note. By Theorem 13.12 part (4), we know that for K < G′, where K = {e′}, we

have ϕ−1[K] < G. This subgroup ϕ−1[K] includes all elements of G mapped under

ϕ to e′. You encountered a similar idea in linear algebra when considering an m×n

matrix A as a linear transformation from Rn to Rm. Rn and Rm are groups (by

Theorem 11.2) and multiplication on the left by A is a homomorphism from Rn

into Rm since A(~v + ~w) = A~v + A~w for all ~v, ~w ∈ Rn (this is Example 13.5). The

identity in Rm is ~0 and the elements of Rn mapped to ~0 form the nullspace of A.

That is, the nullspace of A is A−1[{~0}] (here, we use the symbol A−1 in the sense

of an inverse image of a set under a mapping, not in the sense of the inverse of

matrix A which may or may not exist). Recall that the nullspace of A is related to

the invertibility of matrix A (and so, indirectly at least, to whether the mapping

A : Rn → Rm is one to one and onto—that is, whether it is an isomorphism). In

short, the elements of G mapped to the identity of G′ are important!

Definition 13.13. Let ϕ : G → G′ be a homomorphism. The subgroup ϕ−1[{e′}] =

{x ∈ G | ϕ(x) = e′} (where e′ is the identity in G) is the kernel of ϕ, denoted

Ker(ϕ).

Exercise 13.18. Let ϕ : Z → Z10 be a homomorphism such that ϕ(1) = 6. Find

Ker(ϕ).
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Note. The following result relates Ker(ϕ) to cosets.

Theorem 13.15. Let ϕ : G → G′ be a group homomorphism and let H = Ker(ϕ).

Let a ∈ G. Then the set

ϕ−1[{ϕ(a)}] = {x ∈ G | ϕ(x) = ϕ(a)}

is the left coset aH of H, and is also the right coset Ha of H. So, the two partitions

of G into left cosets and right cosets (see Section II.10) are the same.

Note. Recall that ϕ may not be one to one. In fact, if Ker(ϕ) 6= {e}, then we

know that ϕ is not one to one (in fact this is an “if and only if” observation— see

Corollary 13.18 below). So we can think of ϕ as a “many to one” mapping (for

example, f(x) = x2 is a two to one mapping for x 6= 0 since every nonzero element

of the range is the image of two elements in the domain). Theorem 13.15 tells us

that ϕ maps many elements of G onto single elements of G′. That is, ϕ maps the

cosets aH and Ha onto the same element of G′—namely ϕ(a). We exhibited a one

to one mapping between the different cosets of G with respect to subgroup H in

the Lemma stated before the proof of Lagrange’s Theorem (see the class notes from

Section II.10 or page 100 of the text), so all cosets of H are of the same cardinality

(this cardinality is the “many” in the “many to one” mentioned above). We can

think of ϕ as “collapsing down” (the text’s wording—see page 129) the cosets of

H onto individual elements of G′. See Figure 13.14 on page 130 or consider:
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Notice, for example, that ϕ−1[{ϕ(a)}] is the coset aH = Ha. Now for the proof.

Example 13.17. Let D be the additive group of all differentiable functions map-

ping R into R, and let F be the additive group of all functions mapping R into

R. Define ϕ : D → f as the differentiation operator ϕ(f) = f ′. Then ϕ is a

homomorphism since for all f, g ∈ D we have

ϕ(f + g) = (f + g)′ = f ′ + g′ = ϕ(f) + ϕ(g).

Now Ker(ϕ) = {f ∈ D | f ′ = 0}, so Ker(ϕ) is the set of all constant functions

(which, of course, is a subgroup of D, call it C). We know x2 ∈ F so lets find all

elements of D mapped under ϕ to x2:

{f ∈ D | ϕ(f) = f ′ = x2 ∈ F}.

We know from Calculus 1 (MATH 1910) that this is the set of all functions of the

form f(x) =
1

3
x3+k for some constant k. We denote this set as

∫
x2 dx =

1

3
x3+C.

By Theorem 13.15, this set is the coset of Ker(ϕ) of x2 C: x2 C =

∫
x2 dx.
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Note. The following result tells us when a homomorphism ϕ is “one to one” versus

“many to one,” in terms of Ker(ϕ).

Corollary 13.18. A group homomorphism ϕ : G → G′ is a one to one map if and

only if Ker(ϕ) = {e}.

Exercise 13.34. Is there a nontrivial homomorphism from Z12 to Z4?

Note. We’ll see in the next section that when the left and right cosets of subgroup

H are the same, gH = Hg for all g ∈ G, then we can form a group out of the cosets

of H (as discussed informally in Section II.10). Such subgroups H are useful in the

study of nonabelian groups (we already have a classification of abelian groups in

Theorem 11.12—at least, finitely generated abelian groups).

Definition 13.19. A subgroup H of a group G is normal if its left and right cosets

coincide, that is if gH = Hg for all g ∈ G. Fraleigh simply says “H is a normal

subgroup of G,” but a common notation is H / G.

Note. If G is abelian, then all subgroups of G are normal.

Corollary 13.20. If ϕ : G → G′ is a homomorphism, then Ker(ϕ) is a normal

subgroup of G.
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Note. We’ll see more on normal subgroups in Section III.15 and a lot more in

Section III.16 in connection with simple groups.

Exercise 13.50. Let ϕ : G → H be a group homomorphism. Then ϕ[G] is abelian

if and only if for all x, y ∈ G we have xyx−1y−1 ∈ Ker(ϕ).

Revised: 7/13/2023


