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Section III.14. Factor Groups

Note. In the previous section we used a homomorphism ϕ to map the cosets of

H = Ker(ϕ) one to one and into group G′ where ϕ : G → G′. In fact, ϕ is one to

one and onto ϕ[G], which we know to be a group by Theorem 13.2 Part (3). So

we should be able to make a group out of the cosets of H = Ker(ϕ) and the group

should be isomorphic to ϕ[G]. In this section, we make this clear and explicitly

define the binary operation on the cosets. The group of cosets of H = Ker(ϕ) is

called a factor group.

Theorem 14.1. Let ϕ : G → G′ be a group homomorphism with kernel H =

Ker(ϕ). Then the cosets of H = Ker(ϕ) form a factor group, G/H, where (aH) ·

(bH) = (ab)H. Also, the map µ : G/H → ϕ[G] defined by µ(aH) = ϕ(a) is an

isomorphism. Both coset multiplication and µ are well defined (i.e., independent

of the choices of a and b from the cosets).

Example 14.2. Define γ : Z → Zn as γ(m) ≡ m (mod n). Then γ is a homomor-

phism by Example 13.10. Ker(γ) = {m ∈ Z | m ≡ 0(mod n)} = nZ. The cosets of

Ker(γ) = nZ are (remember, Z and Zn are both additive groups):

nZ = 0 + nZ = {. . . ,−2n,−n, 0, n, 2n, . . .}

1 + nZ = {. . . ,−2n + 1,−n + 1, 1, n + 1, 2n + 1, . . .}

2 + nZ = {. . . ,−2n + 2,−n + 2, 2, n + 2, 2n + 2, . . .}
...
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(n − 1) + nZ = {. . . ,−n − 1,−1, n − 1, 2n − 1, 3n − 1, . . .}.

These cosets are the residue classes modulo n. The mapping µ of Theorem 14.1

is µ : Z/nZ → Zn where µ(m + nZ) = m for each m + nZ ∈ Z/nZ. To illustrate

how addition of the cosets is well-defined, notice that if we choose any elements of

3 + nZ and (n − 1) + nZ, say 5n + 3 and −n − 1, then we have

µ((3+nZ)+((n−1)+nZ)) = γ(5n+3)+γ(−n−1) = (5n+3)(mod n)+(−n−1)(mod n)

= 5n + 3 + (−n − 1)(mod n) = (4n + 2)(mod n) = 2.

Since we do addition modulo n, any representatives of the two cosets will also yield

the same result, 2 here.

Note. The group G/H is at present only defined when H is the kernel of some

homomorphism between group G and some other group G′. Next, we will define

G/H for any H a normal subgroup of G (recall that H is a normal subgroup if

the left and right cosets of H coincide—that is, aH = Ha for all a ∈ G—and of

course Ker(ϕ) is a normal subgroup). A group G/H produced in this way is called

a factor group, a factor group G modulo H, or a quotient group, and “G/H” is read

as “G over H,” “G modulo H,” or “G mod H.” Elements in the same cosets are

said to be congruent modulo H.

Note. We have seen how coset multiplication is well-defined in Theorem 14.1

since left cosets coincide with right cosets for H = Ker(ϕ) and ϕ a homomorphism
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G → G′. However, we can generate cosets of a group G using any subgroup H of

G. As the next result shows, coset multiplication can be well-defined only when left

and right cosets of H coincide and we know that this occurs for normal subgroups

of G (this is the definition of H is a normal subgroup of G, H / G).

Theorem 14.4. Let H be a subgroup of a group G. Then left coset multiplication

is well-defined by the equation (aH) · (bH) = (ab)H if and only if H is a normal

subgroup of G.

Note. We now just need to confirm that the binary operation of Theorem 14.4

actually produces a group of cosets of normal subgroup H of G.

Corollary 14.5. Let H be a normal subgroup of G. Then the cosets of H form a

group G/H under the binary operation (aH) · (bH) = (ab)H.

Definition 14.6. The group G/H in Corollary 14.5 is the factor group (or quotient

group) of G by H.

Example. Consider R under addition. This is an abelian group, so all subgroups

are normal. Consider the subgroup 〈2π〉. 〈2π〉 contains all integer multiples of

2π. For each x ∈ [0, 2π) we get the coset x + 〈2π〉 (so this is an example of an

uncountably infinite number of cosets). Coset x+ 〈2π〉 includes all values of angles



III.14 Factor Groups 4

coterminal with the angle of measure x. So the group R/〈2π〉 involves addition

“modulo 2π.” For example,

(π + 〈2π〉) + (3π/2 + 〈2π〉) = π/2 + 〈2π〉.

In fact, R/〈2π〉 is isomorphic to the group U of all complex numbers of magnitude

1 under multiplication. The isomorphism is ϕ(x + 〈2π〉) = cos x + i sin x.

Note. Initially, we defined the factor groups G/H using a homomorphism ϕ with

H = Ker(ϕ) (in Theorem 14.1). Then, in Corollary 14.5, we constructed G/H

using any normal subgroup without an appeal to a homomorphism. The following

result shows that the normal subgroup is the kernel of a certain homomorphism,

so the approaches of Theorem 14.1 and Corollary 14.5 are closely related.

Theorem 14.9. Let H be a normal subgroup of G. Then γ : G → G/H given by

γ(x) = xH is a homomorphism with kernel H.

Theorem 14.11. The Fundamental Homomorphism Theorem.

Let ϕ : G → G′ be a group homomorphism with kernel H, and let γ : G → G/H

be the homomorphism given by γ(g) = gH of Theorem 14.9. Then:

1. ϕ[G] is a group,

2. µ : G/H → ϕ[G] given by µ(gH) = ϕ(g) is an isomorphism, and

3. ϕ(g) = µ(γ(g)) = µ ◦ γ(g) for each g ∈ G.
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µ is called the canonical (or natural) isomorphism between G/H and ϕ[G]. γ is

similarly the canonical (or natural) homomorphism between G and G/H.

Note. We can map the relationship between ϕ, γ, and µ as:
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This shows that any homomorphism ϕ : G → G′ can be “factored” into a compo-

sition of the homomorphism γ : G → G/H of Theorem 14.9 and the isomorphism

µ : G/H → ϕ[G] of Theorem 14.1 (this is the real claim of The Fundamental

Homomorphism Theorem).

Exercise 14.6. Find the order of Z12 × Z18/〈(4, 3)〉.

Theorem 14.13. Let G be a group and H a subgroup of G. The following are

equivalent.

1. gH = Hg for all g ∈ G (that is, H is a normal subgroup).

2. ghg−1 ∈ H for all g ∈ G and for all h ∈ H.

3. gHg−1 = H for all g ∈ G.
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Definition 14.15a. An isomorphism ϕ : G → G of a group with itself is an

automorphism of G.

Exercise 13.29. Let G be a group and let g ∈ G. Let ig : G → G be defined by

ig(x) = gxg−1 for x ∈ G. The ig is an automorphism of G.

Definition 14.15b. Automorphism ig of Exercise 13.29 is called the inner auto-

morphism of G by g. Applying ig to x is called conjugation of x by g.

Note. By Theorem 14.13, we see that H is a normal subgroup of G if and only if

ig[H] = H for all g ∈ G (this is (1) iff (3) in my statement of Theorem 14.13). In

this case when ig[H] = H, H is called an invariant of ig. So the normal subgroups

of G are precisely those which are invariant under inner automorphisms (for all

g ∈ G, that is). In general, a subgroup K of G is called a conjugate subgroup of

subgroup H if K = ig[H] for some g ∈ G. Exercise 14.27 shows that subgroup

conjugacy forms an equivalence relation on the set of subgroups of a given group

G.
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