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Section III.15. Factor-Group Computations

and Simple Groups

Note. In this section, we try to extract information about a group G by considering

properties of the factor group (or “quotient group”) G/N . We also introduce a new

class of groups, which have received much attention.

Example. Let G be a group with identity e. Consider the normal subgroup

N = {e}. Since N has one element, then all cosets of N have one element—in fact,

the coset gN = {ge} = {g}. So the factor group G/N is isomorphic to G.

Example. For any group G, the factor group G/G is isomorphic to {e}. This is

because there is only one coset of G (treating G as a normal subgroup of G) and

so G/G is a group with one element.

Note. The above two examples are extreme cases of “collapse” of the cosets of G

down to elements of G/N . If G is a finite group and N 6= {e} is a normal subgroup,

then G/N is a smaller group than G and so “may have a more simple structure

than G” (using quotation marks when referring to the text’s wording). There is a

correspondence between the multiplication of cosets in G/N and the multiplication

of their representatives in G (as given in Corollary 14.5).
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Lemma. If G is a finite group and N is a subgroup of G where |N | = |G|/2, then

N is a normal subgroup of G.

Example 15.4. Consider Sn/An. Recall that the symmetric group Sn has order

n! and the alternating group An has order n!/2. So, by Lemma, An is a normal

subgroup and hence Sn/An is defined. So there are two cosets in Sn/An. As in the

proof of Lemma, for any σ ∈ Sn, (1) if σ ∈ An (i.e., σ is an even permutation) then

σAn = An, and (2) if σ ∈ Sn\An (i.e., σ is an odd permutation) then σAn = Sn\An.

So the two cosets correspond to the even permutations and the odd permutations.

If we denote cosets as En and On, we get the multiplication table for Sn/An as:

En On

En En On

On On En

As the text comments, the factor group Sn/An does not give us details about

products of specific elements of Sn, but it does give us information about products

of types of elements of Sn (even and odd, in this case).

Example 15.6. Falsity of the Converse of the Theorem of Lagrange.

We have claimed in the past that the alternating group A4 (of order 4!/2 = 12)

does not have a subgroup of order 6. Recall that Lagrange’s Theorem states that

the order of a subgroup divides the order of its group. This example shows that

there may be divisors of the order of a group which may not be the order of a

subgroup.
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Exercise 15.6. Classify Z×Z/〈(0, 1)〉 according to the Fundamental Theorem of

Finitely Generated Abelian Groups.

Note. The previous exercise foreshadows the following result.

Theorem 15.8. Let G = H ×K be the direct product of groups G and H. Then

H = {(h, e) | h ∈ H} is a normal subgroup of G. Also, G/H is isomorphic to K.

similarly G/K is isomorphic to H where K = {(e, k) | k ∈ K}.

Note. The humble Theorem 15.8 reveals why we have been studying factor

groups—because they allow us to FACTOR GROUPS (sometimes, at least)! It

follows that if H is a normal subgroup of G = H ×K then G ∼= (G/H)×H since

H ∼= H. So the reason we have addressed factor groups is so that we can take

a given group and “factor” (or better yet, “decompose”) it into “smaller” groups.

We know from the statements at the beginning of this section that H1 = {e} and

H2 = G are normal subgroups of G, but they do not yield interesting factor groups

because G/H1
∼= G and G/H2

∼= {e}. So very soon our attention will turn to

normal subgroups which are neither trivial nor improper.

Theorem 15.9. A factor group of a cyclic group is cyclic.

Exercise 15.4. Classify (Z4 × Z8)/〈(1, 2)〉.
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Note. We now introduce a new class of groups, which have a rich history. Details

are given in the supplement to this section.

Definition 15.14. A group is simple if it is nontrivial and has no proper nontrivial

normal subgroups.

Example. For any prime p, the group Zp is simple because it has no proper non-

trivial subgroups by Lagrange’s Theorem (and therefore has no proper nontrivial

normal subgroups).

Note. We now see that simple groups play a role similar to that which prime

numbers play in number theory! That is, if G is simple then the only factor groups

of G are G/G ∼= {e} and G/{e} ∼= G. Notice that we cannot say that simple

groups are equivalent to indecomposable groups. For example, Zpn, where p is

prime, is indecomposable but it is not simple when n > 1. We also cannot say

that if H is a normal subgroup of G, then G ∼= (G/H) × H (as illustrated by

considering indecomposable Z4 and normal subgroup Z2
∼= {0, 2}). The nature by

which group G relates to its normal subgroups will be spelled out in more detail in

the Jordan-Hölder Theorem (Theorem 35.15).

Theorem 15.15. The alternating group An is simple for n ≥ 5.
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Note. The proof we give of Theorem 15.15 is not elegant! It requires a clunky

argument based on several cases. We defer it until the end of this section and give

it as a supplement to these notes.

Note. We are interested in when G/N is simple for normal subgroup N of G.

When this occurs, we have sort of found a maximal “factor” of G.

Note. Theorem 13.12 showed us that a group homomorphism sort of maps sub-

groups “back and forth.” The following result shows that the subgroup property

of normality is also mapped back and forth by homomorphisms.

Theorem 15.16. Let ϕ : G → G′ be a group homomorphism. If N is a normal

subgroup of G, then ϕ[N ] is a normal subgroup of ϕ[G]. Also, if N ′ is a normal

subgroup of ϕ[G], then ϕ−1[N ′] is a normal subgroup of G.

Note. The proofs of the two parts of Theorem 15.16 are Exercises 15.35 and 15.36.

Definition 15.17. A maximal normal subgroup of a group G is a normal subgroup

M not equal to G such that there is no proper normal subgroup N of G properly

containing M .

Theorem 15.18. M is a maximal normal subgroup of G if and only if G/M is

simple.
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Note. Personally, I find the proof in the text hard to follow (it may just be

me, since the previous editions of Fraleigh present the same proof as given in the

7th edition). The proof depends on the use of the homomorphism of Theorem

14.9 which maps G to G/M . In addressing both “M is maximal” and “M/G

is simple” we must be concerned with nontrivial and proper subgroups. Since a

homomorphism is not one to one, this requires special attention to the details.

We now present a proof with many more details than the proof given in Fraleigh

(though still based on Fraleigh’s general argument’s). Notice that both claims in

the theorem are established by contradiction. We now present an alternative proof

of Theorem 15.18.

Definition. For group G, define the center of G as

Z(G) = {z ∈ g | zg = gz for all g ∈ G}.

Note. The letter Z in the notation above is from the German zentrum for “center.”

In Exercise 5.52, it is shown that Z(G) is an abelian subgroup of G. Of course,

if G itself is abelian, then Z(G) = G. Since Z(G) is abelian, then it is a normal

subgroup of G.

Definition. For group G, consider the set

C = {aba−1b−1 | a, b ∈ G}.

C is the commutator subgroup of G. (C is shown to in fact be a group below.)
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Theorem 15.20. Let G be a group. Then the set C = {aba−1b−1 | a, b ∈ G} is a

subgroup of G. Additionally, C is a normal subgroup of G. Furthermore, if N is a

normal subgroup of G then G/N is abelian if and only if C ≤ N .
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