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Part IV. Rings and Fields

Section IV.18. Rings and Fields

Note. Roughly put, modern algebra deals with three types of structures: groups,

rings, and fields. In this section we introduce rings and fields. In this last part

of the course, we look at some properties of these algebraic structures. We will

finally see the “basic goal” of the text in Section IV.22. Rings of Polynomials when

mention is made of solving polynomial equations in a field (see Note IV.22.E).

Note. In Introduction to Modern Algebra 2 (MATH 4137/5137) you will explore

rings some more (Parts V and IX) and you will explore fields a lot more (in Parts

VI and X). There are still some important results from group theory yet to be

presented and these can be found in Part VII. Applications of group theory to

topology can be found in the optional Part VIII.

Note. Rings and fields have two binary operations. We denote these operations

as + and ·. In group theory, we used both + and · as the binary operation of

a group. The choice of + or · was irrelevant in the group setting; it was usually

motivated by the types of example under consideration (Zn is additive and GL(n, R)

is multiplicative), but in group theory the difference between + and · is purely

notational. This is not the case in ring theory or field theory. We require, by

definition, different properties for one binary operation (+) than for the other (·).
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Definition 18.1. A ring 〈R, +, ·〉 is a set R together with two binary operations

+ and ·, called addition and multiplication, respectively, defined on R such that:

R1: 〈R, +〉 is an abelian group.

R2: Multiplication · is associative: (a · b) · c = a · (b · c) for all a, b, c ∈ R.

R3: For all a, b, c ∈ R, the left distribution law a · (b + c) = (a · b) + (a · c) and the

right distribution law (a + b) · c = (a · c) + (b · c) hold.

Note. We adopt the usual order of operations and so we can denote (a · c) + (b · c)

as ac + bc without the parentheses (and often without writing the “·”).

Example 18.2. Some of our most familiar mathematical structures are rings:

〈Z, +, ·〉, 〈Q, +, ·〉 〈R, +, ·〉, and 〈C, +, ·〉.

Note. Since 〈R, +〉 is an abelian group, then we know that any a ∈ R has an addi-

tive inverse in R, denoted −a. However, elements of R may not have multiplicative

inverses. Notice that 〈Z, +, ·〉 is an example of a ring for which most elements do

not have multiplicative inverses (in fact, 1 and −1 are the only elements of Z with

multiplicative inverses).

Example 18.3. Let R be any ring and let Mn(R) be the collection of all n × n

matrices of elements R. Then 〈Mn(R), +〉 is “‘clearly” an abelian group. If we

define the product of two matrices in Mn(R) in the usual “row times column” way,
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then matrix multiplication is associative and the left and right distribution laws

hold (not “clear,” but true). So Mn(R) is itself a ring. Notice that GL(n, R) is a

“subring” of Mn(R).

Example 18.6. We can use 〈Zn, +〉 to define a ring. We only need to define ·

on Zn. For a, b ∈ Zn, define a · b = ab (mod n). Then 〈Zn, +, ·〉 is a ring (more

details about this claim appears in Section IV.22. Rings of Polynomials). Notice

that sometimes elements of Zn have multiplicative inverses and sometimes they do

not.

Example 18.7. Let R1, R2, . . . , Rn be rings. Define R1 × R2 × · · · × Rn =

{(r1, r2, . . . , rn) | ri ∈ Ri for 1 ≤ i ≤ n}. Define addition and multiplication on

R1×R2× · · · ×Rn component-wise. Then R1×R2× · · · ×Rn is itself a ring called

the direct product of R1, R2, . . . , Rn.

Note. We adopt some standard notation in a ring. If a ∈ R is added to itself n

times, we denote the sum as na. If a ∈ R is multiplied by itself n times, we denote

the product as an. We denote the additive inverse of a ∈ R as −a. The additive

identity is denoted 0. If ring R has a multiplicative identity, we denote it as 1 (as in

Theorem 3.13, we can show that a multiplicative identity is unique). In the event

that a ∈ R has a multiplicative inverse, we denote it as a−1.

Note. The following result establishes the usual properties of the interactions
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of products of “positives,” “negatives,” and zero. Be careful, though, in your

interpretation of these results. Remember that “negative a” may not make sense,

but the “additive inverse of a” does make sense in the ring setting (and the field

setting and even the additive group setting).

Theorem 18.8. If R is a ring with additive identity 0, then for all a, b ∈ R we

have

1. 0a = a0 = 0,

2. a(−b) = (−a)b = −(ab), and

3. (−a)(−b) = ab.

Exercise 18.12. Consider {a + b
√

2 | a, b ∈ Q} with the usual addition and

multiplication. Is this a ring?

Solution. Yes! Pay particular attention to closure under ·.

Definition 18.9. For rings R and R′, a map ϕ : R → R′ is a homomorphism if for

all a, b ∈ R we have:

1. ϕ(a + b) = ϕ(a) + ϕ(b), and

2. ϕ(ab) = ϕ(a)ϕ(b).
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Note. As usual, a homomorphism preserves the “structure”—that is, it preserves

the binary operations.

Note. A ring homomorphism between 〈R, +, ·〉 and 〈R′, +, ·〉 is also a group ho-

momorphism between 〈R, +〉 and 〈R′, +〉. Recall that ϕ is one to one if and only

if Ker(ϕ) = {a ∈ R | ϕ(a) = 0′} = {0} ⊂ R. This holds as well for ring homo-

morphisms. In Section III.14 we used group homomorphisms and kernels to define

factor groups. A similar approach will be used in Section V.26 to define factor

rings.

Definition 18.12. A isomorphism ϕ : R → R′ from ring R to ring R′ is a

homomorphism which is one to one and onto R′.

Definition 18.14. A ring in which multiplication is commutative (i.e., ab = ba for

all a, b ∈ R) is a commutative ring. A ring with a multiplicative identity element

is a ring with unity.

Note. As commented above, Theorem 3.13 implies that the multiplicative identity

is unique. We denote it as “1” and it is called unity.

Example 18.15. Zrs and Zr × Zs are isomorphic rings when gcd(r, s) = 1. Since

Zrs is cyclic, we need gcd(r, s) = 1 so that Zr × Zs is cyclic (it is generated by

(1, 1), for example).
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Definition 18.16. Let R be a ring with unity 1 6= 0. An element u ∈ R is a unit

of R if it has a multiplicative inverse in R. If every nonzero element of R is a unit,

then R is a division ring (or skew field). A field is a commutative division ring. A

noncommutative division ring is called a strictly skew field.

Example. 〈Q, +, ·〉, 〈R, +, ·〉, and 〈C, +, ·〉 are all examples of fields. An example

of a strictly skew field (a noncommutative division ring) is the quaternions (we en-

countered the quaternions as a group of order 8, Q8, in Section I.7. Generating Sets

and Cayley Digraphs; strictly speaking the quaternions are an infinite group gener-

ated by the elements of Q8 using real “scalars”—see Section 24, “Noncommutative

Examples,” for details).

Example. Find the units of Z8.
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