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Section IV.20. Fermat’s and Euler’s Theorems

Note. The results of this section really belong in a class on number theory. The

results relate to modular arithmetic. We have seen that the cyclic groups Zn and

the fields Zp where p is prime, are of particular interest, so the relevance of modular

arithmetic should not be a huge surprise.

Exercise 18.37. Let 〈R,+, ·〉 be a ring with unity and let U be the set of all units

in R. Then 〈U, ·〉 is a group.

Proof. First, we show that U is closed under ·. Let u, v ∈ U . Then for some

u′, v′ ∈ U we have u · u′ = u′ · u = 1 and v · v′ = v′ · v = 1. Then

(v′ · u′) · (u · v) = v′(u′u)v = v′1v = v′v = 1,

and

(u · v) · (v′ · u′) = u(vv′)u′ = u1u′ = uu′ = 1.

So uv ∈ U and U is closed under ·. Associativity of · is inherited from R (G1).

Since 1 ·1 = 1, then 1 ∈ U (G2). For u ∈ U , there is u′ ∈ U as above where u ·u′ = 1

(G2). Therefore, 〈U, ·〉 is a group.

Corollary. For any field, the nonzero elements form a group under the field mul-

tiplication.

Proof. In a field, all nonzero elements are units. So this follows from Exercise

18.37.
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Theorem 20.1. Little Theorem of Fermat.

If a ∈ Z and p is a prime not dividing a, then p divides ap−1 − 1. That is, ap−1 ≡ 1

(mod p) for a 6= 0 (mod p).

Corollary 20.2. If a ∈ Z, then ap ≡ a (mod p) for any prime p.

Exercise 20.4. Use Fermat’s theorem to find the remainder of 347 when it is

divided by 23.

Solution. Since p = 23 is prime, we use Fermat’s Theorem to deal with p−1 = 22

order powers of 3.

347 = 322 · 322 · 33 ≡ (1)(1)33 (mod 23) = 27 (mod 23) ≡ 4 (mod 23).

So the remainder is 4.

Theorem 20.6. The set Gn of nonzero elements of Zn that are not 0 divisors

forms a group under multiplication modulo n.

Definition. For n ∈ N, define φ(n) as the number of natural numbers less than or

equal to n which are relatively prime to n. φ is the Euler phi-function.

Example. φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(12) = 4, and φ(p) = p − 1 for p prime.



IV.20 Fermat’s and Euler’s Theorems 3

Note. The group Gn of Theorem 20.6 is abelian and is order φ(n). You might

wonder if these are “new” groups to us. However, since Gn is a finite abelian group,

then we know that we have already encountered it in the Fundamental Theorem

of Finitely Generated Abelian Groups (Theorem 11.12).

Theorem 20.8. Euler’s Theorem.

If a is an integer relatively prime to n, then aφ(n) − 1 is divisible by n. That is,

aφ(n) ≡ 1 (mod n).

Exercise 20.10. Use Euler’s Theorem to find the reminder of 71000 when divided

by 24.

Solution. Notice φ(24) = 8 (1, 5, 7, 11, 13, 17, 19, and 23 are relatively prime to

24), so

71000 = (78)125 ≡ (1)125 (mod 24) ≡ 1 (mod 24).

The remainder is 1. (Also, 72 = 49 ≡ 1 (mod 24), and 71000 = (72)500 ≡

(1)500 (mod 24) ≡ 1 (mod 24).)

Note. We are ultimately interested in solving algebraic equations. The simplest

is ax = b. The following results deal with solutions to this equation.

Theorem 20.10. Let m be a positive integer and let a ∈ Zm be relatively prime

to m. For each b ∈ Zm, the equation ax = b has a unique solution in Zm.
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Corollary 20.11. If a and m are relatively prime integers, then for any integer

b, the congruence ax = b (mod m) has as solutions all integers in precisely one

residue class modulo m.

Theorem 20.12. Let m be a natural number and let a, b ∈ Zm. Let d = gcd(a,m).

The equation ax = b has a solution in Zm if and only if d divides b. When d divides

b, the equation has exactly d solutions in Zm.

Corollary 20.13. Let d = gcd(a,m). The congruence ax = b (mod m) has a

solution if and only if d divides b. When this is the case, the solutions are the

integers in exactly d distinct residue classes modulo m.

Exercise 20.18. Find all solutions to 39x ≡ 52 (mod 130).

Solution. In the notation of Theorem 20.12 we have d = gcd(a,m) = gcd(39, 130) =

13. Now d divides b (i.e., 13 divides 52) so there is a solution. We consider the

“new” equation which results from dividing out factors of d = 13, 3x ≡ 4 (mod 10)

(this is equation a1x ≡ b1 (mod m1) in the proof of Theorem 20.12). Now 7 is the

multiplicative inverse of 3 modulo 10, so 3x ≡ 4 (mod 10) if and only if 7 ·3x ≡ 7 ·4

(mod 10), or x ≡ 8 (mod 10). So the set of all solutions in Z130 of 39x ≡ 52 (mod

130) is {8, 18, 28, 38, . . . , 118, 128}. The solution set of all solutions in Z contains

the following residue classes:

8 + 130Z = {. . . ,−122, 8, 138, 268, . . .},

18 + 130Z = {. . . ,−112, 18, 148, 278, . . .},

...
...

...

128 + 130Z = {. . . ,−132,−2, 128, 268, . . .}.
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