Section IV.20. Fermat's and Euler's Theorems

Note. The results of this section really belong in a class on number theory. The results relate to modular arithmetic. We have seen that the cyclic groups \mathbb{Z}_{n} and the fields \mathbb{Z}_{p} where p is prime, are of particular interest, so the relevance of modular arithmetic should not be a huge surprise.

Exercise 18.37. Let $\langle R,+, \cdot\rangle$ be a ring with unity and let U be the set of all units in R. Then $\langle U, \cdot\rangle$ is a group.

Proof. First, we show that U is closed under . Let $u, v \in U$. Then for some $u^{\prime}, v^{\prime} \in U$ we have $u \cdot u^{\prime}=u^{\prime} \cdot u=1$ and $v \cdot v^{\prime}=v^{\prime} \cdot v=1$. Then

$$
\left(v^{\prime} \cdot u^{\prime}\right) \cdot(u \cdot v)=v^{\prime}\left(u^{\prime} u\right) v=v^{\prime} 1 v=v^{\prime} v=1
$$

and

$$
(u \cdot v) \cdot\left(v^{\prime} \cdot u^{\prime}\right)=u\left(v v^{\prime}\right) u^{\prime}=u 1 u^{\prime}=u u^{\prime}=1 .
$$

So $u v \in U$ and U is closed under •. Associativity of • is inherited from $R\left(\mathcal{G}_{1}\right)$. Since $1 \cdot 1=1$, then $1 \in U\left(\mathcal{G}_{2}\right)$. For $u \in U$, there is $u^{\prime} \in U$ as above where $u \cdot u^{\prime}=1$ $\left(\mathcal{G}_{2}\right)$. Therefore, $\langle U, \cdot\rangle$ is a group.

Corollary. For any field, the nonzero elements form a group under the field multiplication.

Proof. In a field, all nonzero elements are units. So this follows from Exercise 18.37.

Theorem 20.1. Little Theorem of Fermat.

If $a \in \mathbb{Z}$ and p is a prime not dividing a, then p divides $a^{p-1}-1$. That is, $a^{p-1} \equiv 1$ $(\bmod p)$ for $a \neq 0(\bmod p)$.

Corollary 20.2. If $a \in \mathbb{Z}$, then $a^{p} \equiv a(\bmod p)$ for any prime p.

Exercise 20.4. Use Fermat's theorem to find the remainder of 3^{47} when it is divided by 23 .

Solution. Since $p=23$ is prime, we use Fermat's Theorem to deal with $p-1=22$ order powers of 3 .

$$
3^{47}=3^{22} \cdot 3^{22} \cdot 3^{3} \equiv(1)(1) 3^{3}(\bmod 23)=27(\bmod 23) \equiv 4(\bmod 23)
$$

So the remainder is 4 .

Theorem 20.6. The set G_{n} of nonzero elements of \mathbb{Z}_{n} that are not 0 divisors forms a group under multiplication modulo n.

Definition. For $n \in \mathbb{N}$, define $\phi(n)$ as the number of natural numbers less than or equal to n which are relatively prime to n. ϕ is the Euler phi-function.

Example. $\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(12)=4$, and $\phi(p)=p-1$ for p prime.

Note. The group G_{n} of Theorem 20.6 is abelian and is order $\phi(n)$. You might wonder if these are "new" groups to us. However, since G_{n} is a finite abelian group, then we know that we have already encountered it in the Fundamental Theorem of Finitely Generated Abelian Groups (Theorem 11.12).

Theorem 20.8. Euler's Theorem.

If a is an integer relatively prime to n, then $a^{\phi(n)}-1$ is divisible by n. That is, $a^{\phi(n)} \equiv 1(\bmod n)$.

Exercise 20.10. Use Euler's Theorem to find the reminder of 7^{1000} when divided by 24 .

Solution. Notice $\phi(24)=8(1,5,7,11,13,17,19$, and 23 are relatively prime to 24), so

$$
7^{1000}=\left(7^{8}\right)^{125} \equiv(1)^{125}(\bmod 24) \equiv 1(\bmod 24)
$$

The remainder is 1 . (Also, $7^{2}=49 \equiv 1(\bmod 24)$, and $7^{1000}=\left(7^{2}\right)^{500} \equiv$ $(1)^{500}(\bmod 24) \equiv 1(\bmod 24)$.)

Note. We are ultimately interested in solving algebraic equations. The simplest is $a x=b$. The following results deal with solutions to this equation.

Theorem 20.10. Let m be a positive integer and let $a \in \mathbb{Z}_{m}$ be relatively prime to m. For each $b \in \mathbb{Z}_{m}$, the equation $a x=b$ has a unique solution in \mathbb{Z}_{m}.

Corollary 20.11. If a and m are relatively prime integers, then for any integer b, the congruence $a x=b(\bmod m)$ has as solutions all integers in precisely one residue class modulo m.

Theorem 20.12. Let m be a natural number and let $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} if and only if d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_{m}.

Corollary 20.13. Let $d=\operatorname{gcd}(a, m)$. The congruence $a x=b(\bmod m)$ has a solution if and only if d divides b. When this is the case, the solutions are the integers in exactly d distinct residue classes modulo m.

Exercise 20.18. Find all solutions to $39 x \equiv 52(\bmod 130)$.
Solution. In the notation of Theorem 20.12 we have $d=\operatorname{gcd}(a, m)=\operatorname{gcd}(39,130)=$ 13. Now d divides b (i.e., 13 divides 52) so there is a solution. We consider the "new" equation which results from dividing out factors of $d=13,3 x \equiv 4(\bmod 10)$ (this is equation $a_{1} x \equiv b_{1}\left(\bmod m_{1}\right)$ in the proof of Theorem 20.12). Now 7 is the multiplicative inverse of 3 modulo 10 , so $3 x \equiv 4(\bmod 10)$ if and only if $7 \cdot 3 x \equiv 7 \cdot 4$ $(\bmod 10)$, or $x \equiv 8(\bmod 10)$. So the set of all solutions in \mathbb{Z}_{130} of $39 x \equiv 52(\bmod$ 130) is $\{8,18,28,38, \ldots, 118,128\}$. The solution set of all solutions in \mathbb{Z} contains the following residue classes:

$$
\begin{aligned}
8+130 \mathbb{Z} & =\{\ldots,-122,8,138,268, \ldots\} \\
18+130 \mathbb{Z} & =\{\ldots,-112,18,148,278, \ldots\} \\
\vdots & \vdots \\
128+130 \mathbb{Z} & =\{\ldots,-132,-2,128,268, \ldots\}
\end{aligned}
$$

