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Section IV.22. Rings of Polynomials

Note. In this section we set the stage for addressing topics from classical algebra

(namely, finding the zeros of a polynomial) in the setting of modern algebra (groups,

rings, and fields—rings, in this section). To do so, we must keep all “items of

interest” (i.e., polynomials) as elements of our modern algebraic structures. As the

name of the section suggests, we build a ring out of polynomials.

Note IV.22.A. We’ll use the symbol “x” to create polynomials with coefficients

chosen from some ring. The parameter x is referred to as an indeterminate, as

opposed to a variable. Indeterminate x is just a symbol that allows us to create

polynomials. Strictly speaking, we do not substitute values in for x, but instead we

will use a homomorphism to map a polynomial onto a “value” in a ring containing

the coefficients. In this way, we are always dealing with elements of rings (and

often elements of a field).

Definition 22.1. Let R be a ring. A polynomial f(x) with coefficients in R is an

infinite formal series

∞∑
i=0

aix
i = a0 + a1x + a2x

2 + · · ·+ anx
n + · · ·

where ai ∈ R and ai = 0 for all but a finite number of values of i. The ai are

coefficients of f(x). If for some i ≥ 0 it is true that ai 6= 0, then the largest such

value of i is the degree of f(x). If all ai = 0, then the degree of f(x) is undefined.
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If ai = 0 for all i ∈ N, then f(x) is called a constant polynomial. We denote the

set of all polynomials with coefficients in R as R[x].

Note. We use a notation consistent with your previous experiences. If f(x) is

of degree n we may write f(x) as a0 + a1x + a2x
2 + · · · + anx

n, instead of as an

infinite sum. If R has unity 1 6= 0, we write xk to represent 1xk. If some ai = 0

then we omit the term aix
i = 0xi when writing the formal sums. For example, if

f(x) = 0 + 1x + 1x2 + 0x3 + 1x4 + 0x5 + 0x6 + 0x7 + · · · then we write f(x) as

x + x2 + x4.

Note. You have seen infinite formal sums in Calculus 2 (MATH 1920) as power

series (see my online Calculus 2 notes on Section 10.7. Power Series). Of course,

your main concern with a power series is the values of x for which the series con-

verges. However, notice that a polynomial is an infinite formal sum, but in practice

it is only a finite sum since all but a finite number of the ai are 0. So we have no

concerns over convergence or divergence (that is a problem for Analysis 1 and 2

[MATH 4217/5217 and 4227/5227]).

Definition. We define + and · on R[x] as follows. Let f(x), g(x) ∈ R[x] where

f(x) =
∞∑
i=0

aix
i = a0 + a1x + a2x

2 + · · ·+ anx
n + · · · ,

g(x) =
∞∑
i=0

bix
i = b0 + b1x + b2x

2 + · · ·+ bnx
n + · · · .

https://faculty.etsu.edu/gardnerr/1920/12/c10s7.pdf
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Define the sum f(x) + g(x) as

f(x) + g(x) =
∞∑
i=0

cix
i = c0 + c1x + c2x

2 + · · ·+ cnx
n + · · ·

where ci = ai + bi, and define the product f(x) · g(x) as

f(x) · g(x) =
∞∑
i=0

dix
i = d0 + d1x + d2x

2 + · · ·+ dnx
n + · · ·

where dn =
n∑

i=0

aibn−i.

Note. Since all but a finite number of the ais and bis are 0, than all but a finite

number of the cis and dis are 0, and hence the sum and product of f(x) and g(x)

are in fact actually elements of R[x].

Theorem 22.2. The set R[x] of all polynomials in an indeterminate x with coeffi-

cients in a ring R is a ring under polynomial addition and multiplication as defined

above. If R is commutative, then so is R[x], and if R has unity 1 6= 0, then 1 (a

constant polynomial) is also unity for R[x].

Example. Z[x] is the ring of all polynomials with integer coefficients. The zeros

of all of these polynomials (in R) make up the field of algebraic numbers.

Note IV.22.B. Since R[x] is a ring, we can introduce a second indeterminate y

and define the ring (R[x])[y], the ring of polynomials in y with coefficients in R[x].

Not surprisingly, any element of (R[x])[y] can be rewritten as a polynomial in x
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with coefficients from R[y] (just collect together the powers of x). This allows us

to refer to R[x, y], the ring of polynomials in two indeterminates x and y with

coefficients in R. We can also refer to R[x1, x2, . . . , xn], the ring of polynomials in

n indeterminates x1, x2, . . . , xn with coefficients in R. However, our study will be

restricted to single indeterminate polynomials.

Note IV.22.C. If D is an integral domain, then so is D[x] (we need only show

that D[x] has no zero divisors—this is Exercise 22.24). So by Theorem 21.5, there

is a field of quotients of D[x], which we denote as F (x), where every element of

F (x) is a quotient of elements of D[x]: q(x) ∈ F (x) implies q(x) = f(x) /F g(x) for

some f(x), g(x) ∈ D[x], g(x) 6= 0. F (x) is called the field of rational functions in

indeterminate x with coefficients from D (we can also start with a field F instead

of an integral domain D).

Note. The following result allows us to indirectly deal with substituting values into

a polynomial. This is accomplished using a homomorphism, since we are restricted

to dealing simply with rings and mappings. The idea presented here is fundamental

in the study of polynomials which is to follow (briefly in Section IV.23 and in some

more detail in Part X).
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Theorem 22.4. The Evaluation Homomorphism for Field Theory.

Let F be a subfield of a field E, let α ∈ E, and let x be an indeterminate. The

map ϕα : F [x] → E defined by

ϕα(a0 + a1x + a2x
2 + · · ·+ anx

n) = a0 + a1α + a2α
2 + · · ·+ anα

n

where a0 +a1x+a2x
2 + · · ·+anx

n ∈ F [x], is a homomorphism of F [x] into E. Also,

ϕα(x) = α, and ϕα maps F isomorphically by the identity map; that is, ϕα(a) = a

for a ∈ F . The homomorphism ϕα is the evaluation at α.

Note. Schematically, we have (for fixed α ∈ E):

On the left, F is a subring of F [x] (remember that there are not in general inverses

of elements of F [x], for example f(x) = x has no multiplicative inverse in F [x], so

F [x] is not a field). On the right, F is a subfield of E. No claim is mentioned in

the theorem about the structure of ϕα[F [x]], so it may not be a field or even a ring.

Note. Theorem 22.4 holds if F and E are commutative rings with unity instead of

fields. However, it is the case of fields on which our future studies will be centered.
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Example 22.6. Let F be Q and E be R in Theorem 22.4. Consider ϕ0 : Q[x] → R.

We have

ϕ0(a0 + a1x + a2x
2 + · · ·+ anx

n) = a0 + a10 + a20
2 + · · ·+ an0

n = a0.

So ϕ0 maps a polynomial in Q[x] to the constant term. As sets, ϕ0[Q[x]] = Q.

Example 22.8. Let F be Q and E be C in Theorem 22.4. Consider ϕi : Q[x] → C.

Then

ϕi(a0 + a1x + a2x
2 + · · ·+ anx

n) = a0 + a1i + a2i
2 + · · ·+ ani

n.

Notice that ϕi(x
2 + 1) = i2 + 1 = −1 + 1 = 0 and so x2 + 1 ∈ Ker(ϕi).

Definition 22.10. Let F be a subfield of a field E, and let α ∈ E. Let f(x) =

a0 + a1x + a2x
2 + · · · + anx

n ∈ F [x] and let ϕα : F [x] → E be the evaluation

homomorphism of Theorem 22.4. We denote

ϕα(f(x)) = a0 + a1α + a2α
2 + · · ·+ anα

n

as f(α). If f(α) = 0, then α is a zero of f(x).

Note IV.22.D. Finding the zeros of f(x) ∈ F [x] is equivalent to finding α ∈ E

such that ϕα(f) = 0. So the classical algebra problem of solving a polynomial

equation has been converted into a question about a mapping (a homomorphism)

in the modern algebra setting. Remember that it is quite challenging to solve

polynomial equations. However, the equipment of modern algebra will tell us when
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a polynomial equation can be solved algebraically and how to solve it (this is

accomplished in Galois theory which is lightly touched on in Part X).

Note IV.22.E. The text paraphrases the basic goal of this endeavor as “to show

that given any polynomial of degree n ≥ 1, where the coefficients of the polyno-

mial may be from any field, we can find a zero of this polynomial in some field

containing the given field.” This is accomplished after Sections V.26 and V.27

(“Homomorphisms and Factor Rings” and “Prime and Maximal Ideals”) in Sec-

tion VI.29 (“Introduction to Extension Fields”) in Kronecker’s Theorem: Let F

be a field and let f(x) be a nonconstant polynomial in F [x]. Then there exists an

extension field E of F and an α ∈ E such that f(α) = 0.

Note. The book motivates the basic goal by showing that x2−2 ∈ Q[x] has no zero

in Q. Of course, x2 +1 ∈ R[x] has no zero in R[x]. However, any polynomial p(x) ∈

C[x] has a zero in C. That is, C is algebraically closed. This is the Fundamental

Theorem of Algebra (Theorem 31.18 of Section VI.31. Algebraic Extensions).
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